Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 141352 by mathdanisur last updated on 17/May/21

Answered by Rasheed.Sindhi last updated on 18/May/21

If P(x) is divided by D(x) giving  quotient Q(x) & remainder R(x)  then  P(x)=D(x).Q(x)+R(x)  x^(999) −1=(x^2 +1)(x^2 +x+1).Q(x)                                        +ax^3 +bx^2 +cx+d  The above is an identity i-e it is  satisfied by any value of x    Let x^2 +1=0⇒x=±i    ^• When  x=i:  i^(999) −1=ai^3 +bi^2 +ci+d  −i−1=−ai−b+ci+d  −i−1=(c−a)i+(d−b)  c−a=−1 ∧ d−b=−1...........A    ^• When x=−i   (−i)^(999) −1=a(−i)^3 +b(−i)^2 +c(−i)+d   i−1=ai−b−ci+d  a−c=1 ∧ d−b=−1(Same results)  Let x^2 +x+1=0⇒x=ω,ω^2    ^• When  x=ω (cuberoot of unity)  ω^(999) −1=aω^3 +bω^2 +cω+d  1−1=a+bω^2 +cω+d  a+d=0 , b=0 ,c=0...............B  d−b=−1⇒d−0=−1⇒d=−1  c−a=−1⇒a=1  Remainder:   ax^3 +bx^2 +cx+d=1x^3 +0x^2 +0x−1      =x^3 −1  ((x^(999) −1)/((x^2 +1)(x^2 +x+1)))=Q(x)+((x^3 −1)/((x^2 +1)(x^2 +x+1)))             =Q(x)+(((x−1)(x^2 +x+1))/((x^2 +1)(x^2 +x+1)))            =Q(x)+((x−1)/(x^2 +1))  Remainder=x−1

$${If}\:{P}\left({x}\right)\:{is}\:{divided}\:{by}\:{D}\left({x}\right)\:{giving} \\ $$$${quotient}\:{Q}\left({x}\right)\:\&\:{remainder}\:{R}\left({x}\right) \\ $$$${then} \\ $$$${P}\left({x}\right)={D}\left({x}\right).{Q}\left({x}\right)+{R}\left({x}\right) \\ $$$${x}^{\mathrm{999}} −\mathrm{1}=\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right).{Q}\left({x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${The}\:{above}\:{is}\:{an}\:{identity}\:{i}-{e}\:{it}\:{is} \\ $$$${satisfied}\:{by}\:{any}\:{value}\:{of}\:{x} \\ $$$$ \\ $$$${Let}\:{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\Rightarrow{x}=\pm{i} \\ $$$$\:\:\:^{\bullet} {When}\:\:{x}={i}: \\ $$$${i}^{\mathrm{999}} −\mathrm{1}={ai}^{\mathrm{3}} +{bi}^{\mathrm{2}} +{ci}+{d} \\ $$$$−{i}−\mathrm{1}=−{ai}−{b}+{ci}+{d} \\ $$$$−{i}−\mathrm{1}=\left({c}−{a}\right){i}+\left({d}−{b}\right) \\ $$$${c}−{a}=−\mathrm{1}\:\wedge\:{d}−{b}=−\mathrm{1}...........{A} \\ $$$$\:\:\:^{\bullet} {When}\:{x}=−{i} \\ $$$$\:\left(−{i}\right)^{\mathrm{999}} −\mathrm{1}={a}\left(−{i}\right)^{\mathrm{3}} +{b}\left(−{i}\right)^{\mathrm{2}} +{c}\left(−{i}\right)+{d} \\ $$$$\:{i}−\mathrm{1}={ai}−{b}−{ci}+{d} \\ $$$${a}−{c}=\mathrm{1}\:\wedge\:{d}−{b}=−\mathrm{1}\left({Same}\:{results}\right) \\ $$$${Let}\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\Rightarrow{x}=\omega,\omega^{\mathrm{2}} \\ $$$$\:\:^{\bullet} {When}\:\:{x}=\omega\:\left({cuberoot}\:{of}\:{unity}\right) \\ $$$$\omega^{\mathrm{999}} −\mathrm{1}={a}\omega^{\mathrm{3}} +{b}\omega^{\mathrm{2}} +{c}\omega+{d} \\ $$$$\mathrm{1}−\mathrm{1}={a}+{b}\omega^{\mathrm{2}} +{c}\omega+{d} \\ $$$${a}+{d}=\mathrm{0}\:,\:{b}=\mathrm{0}\:,{c}=\mathrm{0}...............{B} \\ $$$${d}−{b}=−\mathrm{1}\Rightarrow{d}−\mathrm{0}=−\mathrm{1}\Rightarrow{d}=−\mathrm{1} \\ $$$${c}−{a}=−\mathrm{1}\Rightarrow{a}=\mathrm{1} \\ $$$${Remainder}:\: \\ $$$${ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{1}{x}^{\mathrm{3}} +\mathrm{0}{x}^{\mathrm{2}} +\mathrm{0}{x}−\mathrm{1} \\ $$$$\:\:\:\:={x}^{\mathrm{3}} −\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{999}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}={Q}\left({x}\right)+\frac{{x}^{\mathrm{3}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:={Q}\left({x}\right)+\frac{\left({x}−\mathrm{1}\right)\cancel{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\cancel{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}} \\ $$$$\:\:\:\:\:\:\:\:\:\:={Q}\left({x}\right)+\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${Remainder}={x}−\mathrm{1} \\ $$

Commented by mathdanisur last updated on 18/May/21

cool dear Sir thankyou

$${cool}\:{dear}\:{Sir}\:{thankyou} \\ $$

Commented by mathdanisur last updated on 18/May/21

Sir, ans: x−1

$${Sir},\:{ans}:\:{x}−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com