Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 141356 by physicstutes last updated on 17/May/21

lim_(x→+∞) (((x+1)/( (√(x^2 +1)))) −1)

limx+(x+1x2+11)

Answered by bemath last updated on 18/May/21

lim_(x→∞)  (((x+1−(√(x^2 +1)))/( (√(x^2 +1)))))=  lim_(x→∞) (((x(1+(1/x)−(√(1+(1/x^2 )))))/(x(√(1+(1/x^2 ))))))=  lim_(x→∞) (((1+(1/x)−(√(1+(1/x^2 ))))/( (√(1+(1/x^2 ))))))= 0

limx(x+1x2+1x2+1)=limx(x(1+1x1+1x2)x1+1x2)=limx(1+1x1+1x21+1x2)=0

Answered by Mathspace last updated on 18/May/21

f(x)=((x+1)/( (√(x^2 +1))))−1 ⇒for x>0  f(x)=((1+(1/x))/( (√(1+(1/x^2 )))))−1  ⇒f(x)∼((1+(1/x))/(1+(1/(2x^2 ))))−1  f(x)∼(1+(1/x))(1−(1/(2x^2 )))−1  =1−(1/(2x^2 ))+(1/x)−(1/(2x^3 ))−1 ⇒  f(x)∼(1/x)−(1/(2x^2 ))→0  (x→+∞) ⇒  lim_(x→+∞) f(x)=0

f(x)=x+1x2+11forx>0f(x)=1+1x1+1x21f(x)1+1x1+12x21f(x)(1+1x)(112x2)1=112x2+1x12x31f(x)1x12x20(x+)limx+f(x)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com