Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141387 by cesarL last updated on 18/May/21

∫_(−π/4) ^(π/4) (sec^2 x+tgx)^2 dx

π/4π/4(sec2x+tgx)2dx

Answered by MJS_new last updated on 18/May/21

∫_(−π/4) ^(π/4) (sec^2  x +tan x)^2  dx=       [t=tan x → dx=cos^2  x dt]  =∫_(−1) ^1 (((t^2 +t+1)^2 )/(t^2 +1))dt=∫_(−1) ^1 (t^2 +2t+2−(1/(t^2 +1)))dt=  =[(t^3 /3)+t^2 +2t−arctan t]_(−1) ^1 =((14)/3)−(π/2)

π/4π/4(sec2x+tanx)2dx=[t=tanxdx=cos2xdt]=11(t2+t+1)2t2+1dt=11(t2+2t+21t2+1)dt==[t33+t2+2tarctant]11=143π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com