All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 141417 by mnjuly1970 last updated on 18/May/21
........advanced.........calculus.......provethat::F:=∫−10ex+e1x−1xdx=??γ
Answered by mnjuly1970 last updated on 27/May/21
:=∫−10e1xxdx=1x=−y∫1∞−ye−ydyy2:=−∫1∞e−yydy=−∫1∞e−yln(y)−[ln(y)e−y]1∞:=−∫1∞e−yln(y)dy⇒−∫0∞e−yln(y)dy+∫01e−yln(y)dy∫−10e1xxdx:=γ+∫01e−xln(x)dx(★):=γ+∫01ln(x)d(1−e−x):=γ+[ln(x)(1−e−x)]01−∫01(1−e−xx)dx:=γ−∫011−e−xxdx=γ+∫0−11−ex−xdx:=γ+∫−101−exxdx(★)::∫−10e1x+ex−1x=γ.....✓........F:=∫−10ex+e1x−1xdx=γ......
Answered by mindispower last updated on 19/May/21
x=1t⇒F=∫−10ex−1xdx+∫−10e1xxdx=A+BA=[ex−1]ln(−x)]−10−∫−10exln(−x)=−∫−10exln(−x)dx=∫10e−tln(t)dtB=[ln(−x)e1x]−10−∫−10e1xx2ln(−x)dx=∫−10−e1xx2ln(−x),t=−1x⇒B=−∫1∞e−tln(t)F=A+B=−∫0∞ln(t)e−tdt=∂x(−∫0∞e−ttx−1dt)∣x=1=∂x.−Γ(x+1)∣x=0=−Γ′(1)=−Γ(1)Ψ(1)=−1.−γ=γ⇒∫−10ex+e1x−1xdx=γ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com