Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 141457 by gajmer last updated on 19/May/21

Answered by mathmax by abdo last updated on 19/May/21

f(x)=(((√(2x^2 +4))−(√(x^2 +5)))/(x−1)) ⇒  f(x)=((∣x∣(√2)(√(1+(2/x^2 )))−∣x∣(√(1+(5/x^2 ))))/(x(1−(1/x)))) ⇒  f(x)∼((∣x∣)/x)×(((√2)+(1/x^2 )−1−(5/(2x^2 )))/(1−(1/x))) =((∣x∣)/x).(((√2)−1−(3/(2x^2 )))/(1−(1/x)))  ⇒lim_(x→+∞) f(x) =(√2)−1 and lim_(x→−∞) f(x)=1−(√2)

$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\sqrt{\mathrm{2x}^{\mathrm{2}} +\mathrm{4}}−\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{5}}}{\mathrm{x}−\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mid\mathrm{x}\mid\sqrt{\mathrm{2}}\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}−\mid\mathrm{x}\mid\sqrt{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{x}^{\mathrm{2}} }}}{\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mid\mathrm{x}\mid}{\mathrm{x}}×\frac{\sqrt{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{1}−\frac{\mathrm{5}}{\mathrm{2x}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}}\:=\frac{\mid\mathrm{x}\mid}{\mathrm{x}}.\frac{\sqrt{\mathrm{2}}−\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2x}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}} \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{2}}−\mathrm{1}\:\mathrm{and}\:\mathrm{lim}_{\mathrm{x}\rightarrow−\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{1}−\sqrt{\mathrm{2}} \\ $$

Answered by bramlexs22 last updated on 19/May/21

 lim_(x→∞)  (((√(2x^2 +4))−(√(x^2 +5)))/(x−1))  = lim_(x→∞)  (((√(2+(4/x^2 )))−(√(1+(5/x^2 ))))/(1−(1/x)))   = (((√2)−1)/1) = (√2) −1

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}}−\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}{{x}−\mathrm{1}} \\ $$$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}+\frac{\mathrm{4}}{{x}^{\mathrm{2}} }}−\sqrt{\mathrm{1}+\frac{\mathrm{5}}{{x}^{\mathrm{2}} }}}{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\: \\ $$$$=\:\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{1}}\:=\:\sqrt{\mathrm{2}}\:−\mathrm{1} \\ $$

Answered by bramlexs22 last updated on 19/May/21

 tan^(−1) x + tan^(−1) y = u  ⇒tan (tan^(−1) x+tan^(−1) y)=tan u  ⇒((tan (tan^(−1) x)+tan (tan^(−1) y))/(1−tan (tan^(−1) x)tan (tan^(−1) y)))=tan u  ⇒ ((x+y)/(1−xy)) = tan u  ⇒u = tan^(−1) (((x+y)/(1−xy)))

$$\:\mathrm{tan}^{−\mathrm{1}} {x}\:+\:\mathrm{tan}^{−\mathrm{1}} {y}\:=\:{u} \\ $$$$\Rightarrow\mathrm{tan}\:\left(\mathrm{tan}^{−\mathrm{1}} {x}+\mathrm{tan}^{−\mathrm{1}} {y}\right)=\mathrm{tan}\:{u} \\ $$$$\Rightarrow\frac{\mathrm{tan}\:\left(\mathrm{tan}^{−\mathrm{1}} {x}\right)+\mathrm{tan}\:\left(\mathrm{tan}^{−\mathrm{1}} {y}\right)}{\mathrm{1}−\mathrm{tan}\:\left(\mathrm{tan}^{−\mathrm{1}} {x}\right)\mathrm{tan}\:\left(\mathrm{tan}^{−\mathrm{1}} {y}\right)}=\mathrm{tan}\:{u} \\ $$$$\Rightarrow\:\frac{{x}+{y}}{\mathrm{1}−{xy}}\:=\:\mathrm{tan}\:{u} \\ $$$$\Rightarrow{u}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}+{y}}{\mathrm{1}−{xy}}\right) \\ $$

Answered by mathmax by abdo last updated on 19/May/21

b)let arctanx =a and arctany =b ⇒x=tana and y =tanb  ⇒((x+y)/(1−xy)) =((tana +tanb)/(1−tana .tanb)) =tan(a+b) ⇒  a+b =arctan(((x+y)/(1−xy)))=arctanx +arctany

$$\left.\mathrm{b}\right)\mathrm{let}\:\mathrm{arctanx}\:=\mathrm{a}\:\mathrm{and}\:\mathrm{arctany}\:=\mathrm{b}\:\Rightarrow\mathrm{x}=\mathrm{tana}\:\mathrm{and}\:\mathrm{y}\:=\mathrm{tanb} \\ $$$$\Rightarrow\frac{\mathrm{x}+\mathrm{y}}{\mathrm{1}−\mathrm{xy}}\:=\frac{\mathrm{tana}\:+\mathrm{tanb}}{\mathrm{1}−\mathrm{tana}\:.\mathrm{tanb}}\:=\mathrm{tan}\left(\mathrm{a}+\mathrm{b}\right)\:\Rightarrow \\ $$$$\mathrm{a}+\mathrm{b}\:=\mathrm{arctan}\left(\frac{\mathrm{x}+\mathrm{y}}{\mathrm{1}−\mathrm{xy}}\right)=\mathrm{arctanx}\:+\mathrm{arctany}\:\:\:\: \\ $$

Answered by bramlexs22 last updated on 19/May/21

sec x + tan x =(√2)   ((1+sin x)/(cos x)) = (√2) ; cos x>0  ⇒1+sin x =(√(2(1−sin^2 x)))  ⇒1+2sin x+sin^2 x=2−2sin^2 x  ⇒3sin^2 x+2sin x−1=0  ⇒(3sin x−1)(sin x+1)=0  ⇒sin x=(1/3) ;  sin x=−1(rejected)  ⇒x = arcsin ((1/3))+2kπ , k∈Z

$$\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\:=\sqrt{\mathrm{2}} \\ $$$$\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:=\:\sqrt{\mathrm{2}}\:;\:\mathrm{cos}\:{x}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}+\mathrm{sin}\:{x}\:=\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}\right)} \\ $$$$\Rightarrow\mathrm{1}+\mathrm{2sin}\:{x}+\mathrm{sin}\:^{\mathrm{2}} {x}=\mathrm{2}−\mathrm{2sin}\:^{\mathrm{2}} {x} \\ $$$$\Rightarrow\mathrm{3sin}\:^{\mathrm{2}} {x}+\mathrm{2sin}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{3sin}\:{x}−\mathrm{1}\right)\left(\mathrm{sin}\:{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{3}}\:;\:\:\mathrm{sin}\:{x}=−\mathrm{1}\left({rejected}\right) \\ $$$$\Rightarrow{x}\:=\:\mathrm{arcsin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{2}{k}\pi\:,\:{k}\in\mathbb{Z} \\ $$

Answered by mathmax by abdo last updated on 19/May/21

1) use scalar product   a^2 =BC^(→2) =(AC^→ −AB^→ )^2   =AC^→_2  −2AB^→ .AC^→^2   +AB^→^2   =b^2  +c^2 −2bc cosA ⇒  cosA =((b^2 +c^2 −a^2 )/(2bc))

$$\left.\mathrm{1}\right)\:\mathrm{use}\:\mathrm{scalar}\:\mathrm{product}\:\:\:\mathrm{a}^{\mathrm{2}} =\mathrm{B}\overset{\rightarrow\mathrm{2}} {\mathrm{C}}=\left(\mathrm{A}\overset{\rightarrow} {\mathrm{C}}−\mathrm{A}\overset{\rightarrow} {\mathrm{B}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{A}\overset{\rightarrow_{\mathrm{2}} } {\mathrm{C}}−\mathrm{2A}\overset{\rightarrow} {\mathrm{B}}.\mathrm{A}\overset{\rightarrow^{\mathrm{2}} } {\mathrm{C}}\:+\mathrm{A}\overset{\rightarrow^{\mathrm{2}} } {\mathrm{B}}\:=\mathrm{b}^{\mathrm{2}} \:+\mathrm{c}^{\mathrm{2}} −\mathrm{2bc}\:\mathrm{cosA}\:\Rightarrow \\ $$$$\mathrm{cosA}\:=\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }{\mathrm{2bc}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com