Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141560 by mnjuly1970 last updated on 20/May/21

                ........Nice ....Calculus(I)......       Evaluate::         I:=∫_0 ^( ln(2)) (x/(e^x +2e^(−x) −2))dx=?      ......

........Nice....Calculus(I)......Evaluate::I:=0ln(2)xex+2ex2dx=?......

Answered by mindispower last updated on 20/May/21

=∫_0 ^(ln(2)) ((xe^x )/((e^x −1)^2 +1))dx  u=e^x −1  =∫_0 ^1 ((ln(1+u))/(u^2 +1))du,u=tg(t)  =∫_0 ^(π/4) ln(1+tg(t))  =∫_0 ^(π/4) ln((((√2)sin((π/4)+u))/(cos(u))))du  =(π/4)ln((√2))+∫_0 ^(π/4) ln(sin((π/4)+u))du−∫_0 ^(π/4) ln(cos(u))du  ∫_0 ^(π/4) ln(sin(u+(π/4)))du=∫_0 ^(π/4) ln(cos(u))du∣u→(π/4)−u  ⇔∫_0 ^(ln(2)) (x/(e^x +2e^(−x) −2))dx=(π/4)ln((√2))=((πln(2))/8)

=0ln(2)xex(ex1)2+1dxu=ex1=01ln(1+u)u2+1du,u=tg(t)=0π4ln(1+tg(t))=0π4ln(2sin(π4+u)cos(u))du=π4ln(2)+0π4ln(sin(π4+u))du0π4ln(cos(u))du0π4ln(sin(u+π4))du=0π4ln(cos(u))duuπ4u0ln(2)xex+2ex2dx=π4ln(2)=πln(2)8

Commented by mnjuly1970 last updated on 20/May/21

    grateful sir power...

gratefulsirpower...

Commented by mindispower last updated on 20/May/21

pleasur sir

pleasursir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com