Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 141668 by mnjuly1970 last updated on 22/May/21

                     .......Advanced ...★ ...★ ... Calculus.......           if    Ω =Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) then prove               that ::     (1/2) = e^(Ω−1)         proof ::      method (1):       ψ (1+x )= −γ+Σ_(n=2) ^∞ (−1)^n ζ(n)x^(n−1)           ( Maclaurin series for ψ(x+1) )      x:=(1/2) ⇒ ψ ((3/2) )=−γ + 2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n )  (∗ )      we know that :: ψ(1+x)=(1/x)+ψ(x)        ( ∗ )  ⇛ ψ ((3/2))=2+ψ((1/2))=−γ+2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n )         (∗)     ⇛         2−γ−ln(4)=−γ+2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n )                             ln((e/2))= Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) =Ω                                       (1/2) = e^(Ω −1)    ....✓                                    ...m.n.july.1970...

$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:.......{Advanced}\:...\bigstar\:...\bigstar\:...\:{Calculus}....... \\ $$$$\:\:\:\:\:\:\:\:\:{if}\:\:\:\:\Omega\:=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{\mathrm{2}^{{n}} }\:{then}\:{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{that}\:::\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:=\:{e}^{\Omega−\mathrm{1}} \:\: \\ $$$$\:\:\:\:{proof}\::: \\ $$$$\:\:\:\:{method}\:\left(\mathrm{1}\right): \\ $$$$\:\:\:\:\:\psi\:\left(\mathrm{1}+{x}\:\right)=\:−\gamma+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right){x}^{{n}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\left(\:{Maclaurin}\:{series}\:{for}\:\psi\left({x}+\mathrm{1}\right)\:\right) \\ $$$$\:\:\:\:{x}:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:\psi\:\left(\frac{\mathrm{3}}{\mathrm{2}}\:\right)=−\gamma\:+\:\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{\mathrm{2}^{{n}} }\:\:\left(\ast\:\right) \\ $$$$\:\:\:\:{we}\:{know}\:{that}\:::\:\psi\left(\mathrm{1}+{x}\right)=\frac{\mathrm{1}}{{x}}+\psi\left({x}\right) \\ $$$$\:\:\:\:\:\:\left(\:\ast\:\right)\:\:\Rrightarrow\:\psi\:\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{2}+\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\gamma+\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{\mathrm{2}^{{n}} } \\ $$$$\:\:\:\:\:\:\:\left(\ast\right)\:\:\:\:\:\Rrightarrow\:\:\:\:\:\:\:\:\:\mathrm{2}−\gamma−{ln}\left(\mathrm{4}\right)=−\gamma+\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{\mathrm{2}^{{n}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ln}\left(\frac{{e}}{\mathrm{2}}\right)=\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)}{\mathrm{2}^{{n}} }\:=\Omega \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:=\:{e}^{\Omega\:−\mathrm{1}} \:\:\:....\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Answered by Dwaipayan Shikari last updated on 22/May/21

ψ(z+1)=−γ+Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n−1)   z^2 ψ(z+1)=−γz^2 +Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n+1)   ψ((1/2))=−γ−log(4)  z=(1/2)     ⇒  ((ψ((3/2))+γ)/4)=Σ_(n=2) ^∞ (−1)^n ζ(n)(1/(2^(n+1)  ))  ⇒((log(e/2))/2)=Σ_(n=2) ^∞ (−1)^n ((ζ(n))/2^(n+1) )  e^(Ω−1) =(1/( (√2)))

$$\psi\left({z}+\mathrm{1}\right)=−\gamma+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right){z}^{{n}−\mathrm{1}} \\ $$$${z}^{\mathrm{2}} \psi\left({z}+\mathrm{1}\right)=−\gamma{z}^{\mathrm{2}} +\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right){z}^{{n}+\mathrm{1}} \:\:\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\gamma−{log}\left(\mathrm{4}\right) \\ $$$${z}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\Rightarrow\:\:\frac{\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)+\gamma}{\mathrm{4}}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \zeta\left({n}\right)\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} \:} \\ $$$$\Rightarrow\frac{{log}\left({e}/\mathrm{2}\right)}{\mathrm{2}}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\zeta\left({n}\right)}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$${e}^{\Omega−\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$

Commented by mnjuly1970 last updated on 22/May/21

thanks alot mr payan  i edited it..grateful..  please recheck my answer..

$${thanks}\:{alot}\:{mr}\:{payan} \\ $$$${i}\:{edited}\:{it}..{grateful}.. \\ $$$${please}\:{recheck}\:{my}\:{answer}.. \\ $$

Commented by Dwaipayan Shikari last updated on 22/May/21

Yes sir it is Correct

$${Yes}\:{sir}\:{it}\:{is}\:{Correct} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com