Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 141716 by qaz last updated on 22/May/21

(x^2 lnx)y′′−xy′+y=0

$$\left({x}^{\mathrm{2}} {lnx}\right){y}''−{xy}'+{y}=\mathrm{0} \\ $$

Answered by mnjuly1970 last updated on 23/May/21

  y_p_1  =ln(x)+1        or    y_p_1  =x      consider :   y_p_1  =1+ln(x)    because :: (x^2 ln(x))[((−1)/x^2 )]−x((1/x))+ln(x)+1=0     y_p_2  =v(x).y_p_1    where :      v(x)=∫(1/((1+ln(x))^2 ))e^(∫(1/(xln(x)))dx) dx             =∫(1/((1+ln(x))^2 ))e^(∫((1/x)/(ln(x)))dx) =∫ (e^(ln(ln(x)) /((1+ln(x))^2 ))dx     =∫((ln(x))/((1+ln(x))^2 ))dx=^(ln(x)=t) ∫((te^t )/((1+t)^2 ))dt     =∫[((1+t−1)/((1+t)^2 )).e^t ]dt=∫[(1/(1+t))−(1/((1+t)^2 ))]e^t dt     =(e^t /(1+t))⇒ v(x)=(x/(1+ln(x)))       y_p_2  =v(x).y_p_1  =(x/((1+ln(x))))(1+ln(x))=x                    ....  y_c =c_1 (1+ln(x))+c_2 x.....                 general solution ....⇑⇑⇑

$$\:\:{y}_{{p}_{\mathrm{1}} } ={ln}\left({x}\right)+\mathrm{1}\:\:\:\:\:\:\:\:{or}\:\:\:\:{y}_{{p}_{\mathrm{1}} } ={x} \\ $$$$\:\:\:\:{consider}\::\:\:\:{y}_{{p}_{\mathrm{1}} } =\mathrm{1}+{ln}\left({x}\right) \\ $$$$\:\:{because}\:::\:\left({x}^{\mathrm{2}} {ln}\left({x}\right)\right)\left[\frac{−\mathrm{1}}{{x}^{\mathrm{2}} }\right]−{x}\left(\frac{\mathrm{1}}{{x}}\right)+{ln}\left({x}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:{y}_{{p}_{\mathrm{2}} } ={v}\left({x}\right).{y}_{{p}_{\mathrm{1}} } \:\:{where}\:: \\ $$$$\:\:\:\:{v}\left({x}\right)=\int\frac{\mathrm{1}}{\left(\mathrm{1}+{ln}\left({x}\right)\right)^{\mathrm{2}} }{e}^{\int\frac{\mathrm{1}}{{xln}\left({x}\right)}{dx}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\int\frac{\mathrm{1}}{\left(\mathrm{1}+{ln}\left({x}\right)\right)^{\mathrm{2}} }{e}^{\int\frac{\frac{\mathrm{1}}{{x}}}{{ln}\left({x}\right)}{dx}} =\int\:\frac{{e}^{{ln}\left({ln}\left({x}\right)\right.} }{\left(\mathrm{1}+{ln}\left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$\:\:\:=\int\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{ln}\left({x}\right)\right)^{\mathrm{2}} }{dx}\overset{{ln}\left({x}\right)={t}} {=}\int\frac{{te}^{{t}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$\:\:\:=\int\left[\frac{\mathrm{1}+{t}−\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }.{e}^{{t}} \right]{dt}=\int\left[\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\right]{e}^{{t}} {dt} \\ $$$$\:\:\:=\frac{{e}^{{t}} }{\mathrm{1}+{t}}\Rightarrow\:{v}\left({x}\right)=\frac{{x}}{\mathrm{1}+{ln}\left({x}\right)} \\ $$$$\:\:\:\:\:{y}_{{p}_{\mathrm{2}} } ={v}\left({x}\right).{y}_{{p}_{\mathrm{1}} } =\frac{{x}}{\left(\mathrm{1}+{ln}\left({x}\right)\right)}\left(\mathrm{1}+{ln}\left({x}\right)\right)={x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\:{y}_{{c}} ={c}_{\mathrm{1}} \left(\mathrm{1}+{ln}\left({x}\right)\right)+{c}_{\mathrm{2}} {x}..... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{general}\:{solution}\:....\Uparrow\Uparrow\Uparrow \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com