Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 141752 by 0731619 last updated on 23/May/21

Answered by qaz last updated on 23/May/21

Ω=∫_0 ^∞ ((tan^(−1) x)/((x+1)(x^2 +1)))dx  =∫_0 ^(π/2) (u/(tan u+1))du  =∫_0 ^(π/2) ((ucos u)/(sin u+cos u))du.......................(1)  =∫_0 ^(π/2) ((((π/2)−u)sin u)/(sin u+cos u))du  =(π/2)∫_0 ^(π/2) ((sin u)/(sin u+cos u))du−∫_0 ^(π/2) ((usin u)/(sin u+cos u))du  =(π^2 /8)−∫_0 ^(π/2) ((usin u)/(sin u+cos u))du.................(2)  (1)+(2)  ⇒2Ω=(π^2 /8)+∫_0 ^(π/2) ((u(cos u−sin u))/(sin u+cos u))du  =(π^2 /8)−∫_0 ^(π/2) ln(sin u+cos u)du  =(π^2 /8)−∫_0 ^(π/2) ln(cos u(tan u+1))du  =(π^2 /8)+(π/2)ln2−∫_0 ^(π/2) ln(1+tan u)du  =(π^2 /8)+(π/2)ln2−∫_0 ^∞ ((ln(1+u))/(1+u^2 ))du  =(π^2 /8)+(π/2)ln2−2∫_0 ^1 ((ln(1+u))/(1+u^2 ))du+∫_0 ^1 ((lnu)/(1+u^2 ))du  =(π^2 /8)+(π/2)ln2−2∙(π/8)ln2−G  =(π^2 /8)+(π/4)ln2−G  ⇒Ω=(π^2 /(16))+(π/8)ln2−(G/2)

Ω=0tan1x(x+1)(x2+1)dx=0π/2utanu+1du=0π/2ucosusinu+cosudu.......................(1)=0π/2(π2u)sinusinu+cosudu=π20π/2sinusinu+cosudu0π/2usinusinu+cosudu=π280π/2usinusinu+cosudu.................(2)(1)+(2)2Ω=π28+0π/2u(cosusinu)sinu+cosudu=π280π/2ln(sinu+cosu)du=π280π/2ln(cosu(tanu+1))du=π28+π2ln20π/2ln(1+tanu)du=π28+π2ln20ln(1+u)1+u2du=π28+π2ln2201ln(1+u)1+u2du+01lnu1+u2du=π28+π2ln22π8ln2G=π28+π4ln2GΩ=π216+π8ln2G2

Commented by 0731619 last updated on 23/May/21

tanks

tanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com