All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 141752 by 0731619 last updated on 23/May/21
Answered by qaz last updated on 23/May/21
Ω=∫0∞tan−1x(x+1)(x2+1)dx=∫0π/2utanu+1du=∫0π/2ucosusinu+cosudu.......................(1)=∫0π/2(π2−u)sinusinu+cosudu=π2∫0π/2sinusinu+cosudu−∫0π/2usinusinu+cosudu=π28−∫0π/2usinusinu+cosudu.................(2)(1)+(2)⇒2Ω=π28+∫0π/2u(cosu−sinu)sinu+cosudu=π28−∫0π/2ln(sinu+cosu)du=π28−∫0π/2ln(cosu(tanu+1))du=π28+π2ln2−∫0π/2ln(1+tanu)du=π28+π2ln2−∫0∞ln(1+u)1+u2du=π28+π2ln2−2∫01ln(1+u)1+u2du+∫01lnu1+u2du=π28+π2ln2−2⋅π8ln2−G=π28+π4ln2−G⇒Ω=π216+π8ln2−G2
Commented by 0731619 last updated on 23/May/21
tanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com