Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 141794 by mathdanisur last updated on 23/May/21

Commented by JDamian last updated on 23/May/21

repeated question 141730

repeatedquestion141730

Commented by mathdanisur last updated on 23/May/21

solution, no answer

solution,noanswer

Answered by MJS_new last updated on 23/May/21

my path:  let y=px∧z=qx  (1)     (p^2 +p+1)x^2 =9  (2)     (p^2 +pq+q^2 )x^2 =16  (3)     (q^2 +q+1)x^2 =25  ⇒  ((p^2 +p+1)/9)=((p^2 +pq+q^2 )/(16))=((q^2 +q+1)/(25))  (a)=(b)=(c)  from solving (a)=(b) ∧ (b)=(c) we get  q=((−p(2p+1))/(p−1))  this leads to (a)=(c)  (p^2 +p+1)(p^2 +((32)/(11))p−((16)/(11)))=0  ⇒ p=−((16+12(√3))/(11))∨p=((−16+12(√3))/(11))  now insert backwards

mypath:lety=pxz=qx(1)(p2+p+1)x2=9(2)(p2+pq+q2)x2=16(3)(q2+q+1)x2=25p2+p+19=p2+pq+q216=q2+q+125(a)=(b)=(c)fromsolving(a)=(b)(b)=(c)wegetq=p(2p+1)p1thisleadsto(a)=(c)(p2+p+1)(p2+3211p1611)=0p=16+12311p=16+12311nowinsertbackwards

Answered by mr W last updated on 23/May/21

x^2 +y^2 +xy=9     ...(i)  y^2 +z^2 +yz=16    ...(ii)  z^2 +x^2 +zx=25    ...(iii)  (ii)−(i):  z^2 −x^2 +y(z−x)=7  (z−x)(x+y+z)=7  let s=x+y+z  ⇒z=(7/s)+x  (iii)−(ii):  (x−y)(x+y+z)=9  ⇒y=−(9/s)+x  x+y+z=x−(9/s)+x+(7/s)+x=3x−(2/s)=s  ⇒x=(s/3)+(2/(3s))  ⇒y=−(9/s)+(s/3)+(2/(3s))=(s/3)−((25)/(3s))  insert into (i):  ((s/3)+(2/(3s)))^2 +((s/3)−((25)/(3s)))^2 +((s/3)+(2/(3s)))((s/3)−((25)/(3s)))=9  s^2 −50+((193)/s^2 )=0  s^4 −50s^2 +193=0  ⇒s^2 =25±12(√3)    (i)+(ii)+(iii):  2(x^2 +y^2 +z^2 )+(zy+yz+zx)=50    s^2 =(x+y+z)^2 =x^2 +y^2 +z^2 +2(xy+yz+zx)  2s^2 =2(x^2 +y^2 +z^2 )+xy+yz+zx+3(xy+yz+zx)  2(25±12(√3))=50+3(xy+yz+zx)  ⇒xy+yz+zx=±8(√3)

x2+y2+xy=9...(i)y2+z2+yz=16...(ii)z2+x2+zx=25...(iii)(ii)(i):z2x2+y(zx)=7(zx)(x+y+z)=7lets=x+y+zz=7s+x(iii)(ii):(xy)(x+y+z)=9y=9s+xx+y+z=x9s+x+7s+x=3x2s=sx=s3+23sy=9s+s3+23s=s3253sinsertinto(i):(s3+23s)2+(s3253s)2+(s3+23s)(s3253s)=9s250+193s2=0s450s2+193=0s2=25±123(i)+(ii)+(iii):2(x2+y2+z2)+(zy+yz+zx)=50s2=(x+y+z)2=x2+y2+z2+2(xy+yz+zx)2s2=2(x2+y2+z2)+xy+yz+zx+3(xy+yz+zx)2(25±123)=50+3(xy+yz+zx)xy+yz+zx=±83

Terms of Service

Privacy Policy

Contact: info@tinkutara.com