Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 141805 by mohammad17 last updated on 23/May/21

∫(dx/(1−tanx))

dx1tanx

Answered by MJS_new last updated on 23/May/21

∫(dx/(1−tan x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/((1−t)(t^2 +1)))=  =(1/4)∫((2t)/(t^2 +1))dt+(1/2)∫(dt/(t^2 +1))−(1/2)∫(dt/(t−1))=  =(1/4)ln (t^2 +1) +(1/2)arctan t −(1/2)ln (t−1) =  =(1/4)ln ((t^2 +1)/((t−1)^2 )) +(1/2)arctan t =  =(x/2)−(1/4)ln (1−sin 2x) +C

dx1tanx=[t=tanxdx=dtt2+1]=dt(1t)(t2+1)==142tt2+1dt+12dtt2+112dtt1==14ln(t2+1)+12arctant12ln(t1)==14lnt2+1(t1)2+12arctant==x214ln(1sin2x)+C

Answered by mathmax by abdo last updated on 24/May/21

Φ=∫ (dx/(1−tanx)) ⇒Φ=_(tanx=t)   ∫ (dt/((1+t^2 )(1−t))) =−∫ (dt/((t−1)(t^2  +1)))  let decompose F(t)=(1/((t−1)(t^2 +1)))  F(t)=(a/(t−1)) +((bt +c)/(t^2 +1))  ,  a=(1/2),lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/2)  ⇒F(t)=(1/(2(t−1))) +((−(1/2)t+c)/(t^2 +1))  F(o)=−1 =−(1/2) +c ⇒c=−(1/2) ⇒F(t)=(1/(2(t−1)))−(1/2)×((t+1)/(t^2  +1))  ⇒Φ=−∫ F(t)dt =−(1/2)∫ (dt/(t−1)) +(1/2)∫ ((t+1)/(t^2  +1))dt  =−(1/2)log∣t−1∣ +(1/4)log(t^2  +1)+(1/2)arctant +C  =−(1/2)log∣tanx−1∣ +(1/4)log(1+tan^2 x) +(x/2) +C

Φ=dx1tanxΦ=tanx=tdt(1+t2)(1t)=dt(t1)(t2+1)letdecomposeF(t)=1(t1)(t2+1)F(t)=at1+bt+ct2+1,a=12,limt+tF(t)=0=a+bb=12F(t)=12(t1)+12t+ct2+1F(o)=1=12+cc=12F(t)=12(t1)12×t+1t2+1Φ=F(t)dt=12dtt1+12t+1t2+1dt=12logt1+14log(t2+1)+12arctant+C=12logtanx1+14log(1+tan2x)+x2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com