All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 141805 by mohammad17 last updated on 23/May/21
∫dx1−tanx
Answered by MJS_new last updated on 23/May/21
∫dx1−tanx=[t=tanx→dx=dtt2+1]=∫dt(1−t)(t2+1)==14∫2tt2+1dt+12∫dtt2+1−12∫dtt−1==14ln(t2+1)+12arctant−12ln(t−1)==14lnt2+1(t−1)2+12arctant==x2−14ln(1−sin2x)+C
Answered by mathmax by abdo last updated on 24/May/21
Φ=∫dx1−tanx⇒Φ=tanx=t∫dt(1+t2)(1−t)=−∫dt(t−1)(t2+1)letdecomposeF(t)=1(t−1)(t2+1)F(t)=at−1+bt+ct2+1,a=12,limt→+∞tF(t)=0=a+b⇒b=−12⇒F(t)=12(t−1)+−12t+ct2+1F(o)=−1=−12+c⇒c=−12⇒F(t)=12(t−1)−12×t+1t2+1⇒Φ=−∫F(t)dt=−12∫dtt−1+12∫t+1t2+1dt=−12log∣t−1∣+14log(t2+1)+12arctant+C=−12log∣tanx−1∣+14log(1+tan2x)+x2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com