All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 141811 by mnjuly1970 last updated on 23/May/21
Θ:=(∑∞n=1n42n.n!)12=?
Answered by qaz last updated on 23/May/21
(xD)4=xDxDxDxD=xDxDx(D+xD2)=xDx[(D+xD2)+x(D2+D2+xD3]=xDx(D+3xD2+x2D3)=x[(D+3xD2+x2D3)+x(D2+3D2+3xD3+2xD3+x2D4)]=xD+7x2D2+6x3D3+x4D4Θ=(∑∞n=1n42nn!)2=((xD)4(∑∞n=0xnn!−1))1/2∣x=1/2=[(xD)4(ex−1)]1/2∣x=1/2=[(x+7x2+6x3+x4)ex]1/2∣x=1/2=(12+74+68+116)1/2e4=74e4
Commented by mnjuly1970 last updated on 23/May/21
thankyousomuchmrqaz..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com