Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 141812 by mathsuji last updated on 23/May/21

Commented by mr W last updated on 23/May/21

check your question and diagram!  ∠BEC=α ?  but according to diagram  ∠BEC=180°

checkyourquestionanddiagram!BEC=α?butaccordingtodiagramBEC=180°

Commented by mathsuji last updated on 23/May/21

Sorry sir, BED=α

Sorrysir,BED=α

Answered by mr W last updated on 24/May/21

Commented by mr W last updated on 24/May/21

given: a,b,α  let p=EB, q=EA, ∠EAB=β  b^2 =p^2 +q^2 −2pqcos α  a^2 =p^2 +q^2 +2pqcos α  if α=90°: p=q=((√(a^2 +b^2 ))/2)  otherwise:  ⇒pq=((a^2 −b^2 )/(4cos α))=μ, say  ⇒p^2 +q^2 =((a^2 +b^2 )/2)=λ, say  ⇒p^4 +q^2 p^2 =λp^2   ⇒p^4 −λp^2 +μ^2 =0  ⇒p^2 =((λ±(√(λ^2 −4μ^2 )))/2)  ⇒p=(√((λ+(√(λ^2 −4μ^2 )))/2))  ⇒q=(√((λ−(√(λ^2 −4μ^2 )))/2))  ((sin β)/p)=((sin α)/a)  ⇒sin β=((p sin α)/a)  ⇒β=sin^(−1) (((p sin α)/a))  EF=q sin β=((pq sin α)/a)=(((a^2 −b^2 )tan α)/(4a))  ((EH)/(sin (β/2)))=(q/(sin α))  ⇒EH=((q sin (β/2))/(sin α))  A_(ΔEFH) =((EF×EH×sin ((π/2)−α+β))/2)  ⇒A_(ΔEFH) =(((a^2 −b^2 )q sin (β/2) cos (α−β))/(8a cos α))  FH^2 =EF^2 +EH^2 −2×EF×EH×cos ((π/2)−α+β)  ⇒EH=(√([(((a^2 −b^2 )tan α)/(4a))]^2 +[((q sin (β/2))/(sin α))]^2 −(((a^2 −b^2 )q sin (β/2)sin (α−β))/(2acos α))))

given:a,b,αletp=EB,q=EA,EAB=βb2=p2+q22pqcosαa2=p2+q2+2pqcosαifα=90°:p=q=a2+b22otherwise:pq=a2b24cosα=μ,sayp2+q2=a2+b22=λ,sayp4+q2p2=λp2p4λp2+μ2=0p2=λ±λ24μ22p=λ+λ24μ22q=λλ24μ22sinβp=sinαasinβ=psinαaβ=sin1(psinαa)EF=qsinβ=pqsinαa=(a2b2)tanα4aEHsinβ2=qsinαEH=qsinβ2sinαAΔEFH=EF×EH×sin(π2α+β)2AΔEFH=(a2b2)qsinβ2cos(αβ)8acosαFH2=EF2+EH22×EF×EH×cos(π2α+β)EH=[(a2b2)tanα4a]2+[qsinβ2sinα]2(a2b2)qsinβ2sin(αβ)2acosα

Terms of Service

Privacy Policy

Contact: info@tinkutara.com