Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141847 by iloveisrael last updated on 24/May/21

 I = ∫ ((sec x)/(1+csc x)) dx

I=secx1+cscxdx

Answered by MJS_new last updated on 24/May/21

∫((sec x)/(1+csc x))=       [t=tan (x/2) → dx=2cos^2  (x/2) dt]  =−4∫(t/((t−1)(t+1)^3 ))dt=  =−(1/2)∫(dt/(t−1))−2∫(dt/((t+1)^3 ))+∫(dt/((t+1)^2 ))+(1/2)∫(dt/(t+1))=  =−(1/2)ln (t−1) +(1/((t+1)^2 ))−(1/(t+1))+(1/2)ln (t+1) =  =−(t/((t+1)^2 ))+(1/2)ln ((t+1)/(t−1)) =...  =−((sin x)/(2(1+sin x)))+(1/2)ln ∣((cos x)/(1−sin x))∣ +C

secx1+cscx=[t=tanx2dx=2cos2x2dt]=4t(t1)(t+1)3dt==12dtt12dt(t+1)3+dt(t+1)2+12dtt+1==12ln(t1)+1(t+1)21t+1+12ln(t+1)==t(t+1)2+12lnt+1t1=...=sinx2(1+sinx)+12lncosx1sinx+C

Answered by iloveisrael last updated on 24/May/21

I= ∫ ((1/(cos x))/(1+(1/(sin x)))) dx = ∫ ((sin x)/(cos xsin x+cos x)) dx  I= ∫ ((sin x)/(cos x(sin x+1))) dx  I=∫ ((sin x(sin x−1))/(−cos^3 x)) dx  I=−∫ ((sin^2 x−sin x)/(cos^3 x)) dx  I=−{∫ sec^3 x dx −∫ sec x dx }−         ∫ ((d(cos x))/(cos^3 x))   I=ln ∣sec x+tan x∣+ (1/2)sec^2 x −        ∫ sec^3 x dx

I=1cosx1+1sinxdx=sinxcosxsinx+cosxdxI=sinxcosx(sinx+1)dxI=sinx(sinx1)cos3xdxI=sin2xsinxcos3xdxI={sec3xdxsecxdx}d(cosx)cos3xI=lnsecx+tanx+12sec2xsec3xdx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com