All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 141847 by iloveisrael last updated on 24/May/21
I=∫secx1+cscxdx
Answered by MJS_new last updated on 24/May/21
∫secx1+cscx=[t=tanx2→dx=2cos2x2dt]=−4∫t(t−1)(t+1)3dt==−12∫dtt−1−2∫dt(t+1)3+∫dt(t+1)2+12∫dtt+1==−12ln(t−1)+1(t+1)2−1t+1+12ln(t+1)==−t(t+1)2+12lnt+1t−1=...=−sinx2(1+sinx)+12ln∣cosx1−sinx∣+C
Answered by iloveisrael last updated on 24/May/21
I=∫1cosx1+1sinxdx=∫sinxcosxsinx+cosxdxI=∫sinxcosx(sinx+1)dxI=∫sinx(sinx−1)−cos3xdxI=−∫sin2x−sinxcos3xdxI=−{∫sec3xdx−∫secxdx}−∫d(cosx)cos3xI=ln∣secx+tanx∣+12sec2x−∫sec3xdx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com