Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 141914 by mnjuly1970 last updated on 24/May/21

            prove that::       φ:=∫_0 ^( π) (x/((sin(x))^(1/2) ))dx=(√(π/8)) Γ^( 2) ((1/4))...✓           .........

provethat::ϕ:=0πx(sin(x))12dx=π8Γ2(14)............

Answered by qaz last updated on 24/May/21

φ=∫_0 ^π (x/( (√(sin x))))dx....................(1)  =∫_0 ^π ((π−x)/( (√(sin x))))dx  =π∫_0 ^π (dx/( (√(sin x))))−∫_0 ^π (x/( (√(sin x))))dx.......(2)  (1)+(2)  ⇒φ=(π/2)∫_0 ^π (dx/( (√(sin x))))=π∫_0 ^(π/2) (dx/( (√(sin x))))  =(π/2)((Γ((1/4))Γ((1/2)))/(Γ((3/4))))  =((π(√π))/2)((Γ^2 ((1/4)))/π)sin (π/4)  =(√(π/8))Γ^2 ((1/4))

ϕ=0πxsinxdx....................(1)=0ππxsinxdx=π0πdxsinx0πxsinxdx.......(2)(1)+(2)ϕ=π20πdxsinx=π0π/2dxsinx=π2Γ(14)Γ(12)Γ(34)=ππ2Γ2(14)πsinπ4=π8Γ2(14)

Answered by Dwaipayan Shikari last updated on 24/May/21

∫_0 ^π (x/( (√(sinx))))dx=∫_0 ^π ((π−x)/( (√(sinx))))dx=(π/2)∫_0 ^π (1/( (√(sin(x)))))dx=π.((Γ((1/4))Γ((1/2)))/(2Γ((3/4))))  =(√(π/2)) ((Γ^2 ((1/4)))/2)=(√(π/8)) Γ^2 ((1/4))

0πxsinxdx=0ππxsinxdx=π20π1sin(x)dx=π.Γ(14)Γ(12)2Γ(34)=π2Γ2(14)2=π8Γ2(14)

Answered by mathmax by abdo last updated on 24/May/21

Φ=∫_0 ^π  (x/( (√(sinx)))) dx ⇒Φ=_(x=π−t)    −∫_0 ^π  ((π−t)/( (√(sint))))(−dt) =∫_0 ^π  ((πdt)/( (√(sint))))−Φ ⇒  2Φ=π ∫_0 ^π  (dt/( (√(sint))))  ⇒Φ=(π/2)∫_0 ^π  (dt/( (√(sint))))  we have ∫_0 ^π  (dt/( (√(sint)))) =∫_0 ^(π/2)  (dt/( (√(sint)))) +∫_(π/2) ^π  (dt/( (√(sint))))(→t=(π/2)+u)  =∫_0 ^(π/2)  (dt/( (√(sint)))) +∫_0 ^(π/2)  (du/( (√(cosu))))  but  ∫_0 ^(π/2) (dt/( (√(sint)))) =∫_0 ^(π/2) (cost)^0  (sint)^(−(1/2)) dt  2p−1=0 ⇒p=(1/2) and 2q−1=−(1/2) ⇒2q=(1/2) ⇒q=(1/4) ⇒  ∫_0 ^(π/2) (dt/( (√(sint)))) =∫_0 ^(π/2)  (cost)^(2.(1/2)−1)  .(sint)^(2.(1/4)−1) dt =(1/2)B((1/2),(1/4))  =(1/2)((Γ((1/2)).Γ((1/4)))/(Γ((3/4))))  Γ((1/4)).Γ(1−(1/4))=(π/(sin((π/4)))) =π(√2) ⇒Γ((3/4))=((π(√2))/(Γ((1/4))))⇒  ∫_0 ^(π/2)  (dt/( (√(sint))))=((√π)/2)×π(√2).Γ^2 ((1/4)) =((π(√π))/( (√2)))Γ^2 ((1/4)) also  ∫_0 ^(π/2)  (dt/( (√(cost))))=((π(√π))/( (√2)))Γ^2 ((1/4)) ⇒∫_0 ^π  (dt/( (√(sint))))=((2π(√π))/( (√2)))Γ^2 ((1/4)) ⇒  Φ=π(√(2π)).Γ^2 ((1/4))

Φ=0πxsinxdxΦ=x=πt0ππtsint(dt)=0ππdtsintΦ2Φ=π0πdtsintΦ=π20πdtsintwehave0πdtsint=0π2dtsint+π2πdtsint(t=π2+u)=0π2dtsint+0π2ducosubut0π2dtsint=0π2(cost)0(sint)12dt2p1=0p=12and2q1=122q=12q=140π2dtsint=0π2(cost)2.121.(sint)2.141dt=12B(12,14)=12Γ(12).Γ(14)Γ(34)Γ(14).Γ(114)=πsin(π4)=π2Γ(34)=π2Γ(14)0π2dtsint=π2×π2.Γ2(14)=ππ2Γ2(14)also0π2dtcost=ππ2Γ2(14)0πdtsint=2ππ2Γ2(14)Φ=π2π.Γ2(14)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com