All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 141914 by mnjuly1970 last updated on 24/May/21
provethat::ϕ:=∫0πx(sin(x))12dx=π8Γ2(14)...✓.........
Answered by qaz last updated on 24/May/21
ϕ=∫0πxsinxdx....................(1)=∫0ππ−xsinxdx=π∫0πdxsinx−∫0πxsinxdx.......(2)(1)+(2)⇒ϕ=π2∫0πdxsinx=π∫0π/2dxsinx=π2Γ(14)Γ(12)Γ(34)=ππ2Γ2(14)πsinπ4=π8Γ2(14)
Answered by Dwaipayan Shikari last updated on 24/May/21
∫0πxsinxdx=∫0ππ−xsinxdx=π2∫0π1sin(x)dx=π.Γ(14)Γ(12)2Γ(34)=π2Γ2(14)2=π8Γ2(14)
Answered by mathmax by abdo last updated on 24/May/21
Φ=∫0πxsinxdx⇒Φ=x=π−t−∫0ππ−tsint(−dt)=∫0ππdtsint−Φ⇒2Φ=π∫0πdtsint⇒Φ=π2∫0πdtsintwehave∫0πdtsint=∫0π2dtsint+∫π2πdtsint(→t=π2+u)=∫0π2dtsint+∫0π2ducosubut∫0π2dtsint=∫0π2(cost)0(sint)−12dt2p−1=0⇒p=12and2q−1=−12⇒2q=12⇒q=14⇒∫0π2dtsint=∫0π2(cost)2.12−1.(sint)2.14−1dt=12B(12,14)=12Γ(12).Γ(14)Γ(34)Γ(14).Γ(1−14)=πsin(π4)=π2⇒Γ(34)=π2Γ(14)⇒∫0π2dtsint=π2×π2.Γ2(14)=ππ2Γ2(14)also∫0π2dtcost=ππ2Γ2(14)⇒∫0πdtsint=2ππ2Γ2(14)⇒Φ=π2π.Γ2(14)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com