All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 141931 by mathmax by abdo last updated on 24/May/21
calculate∫0∞e−2xln(1+e3x)dx
Answered by mindispower last updated on 24/May/21
ln(1+e3x)=3x+ln(1+e−3x)=∫0∞3xe−2xdx+∫0∞e−2x.Σ(−1)kk+1e−3(1+k)xdx=∫0∞34ye−ydy+∑k⩾0(−1)kk+1∫0∞e−(5+3k)xdx=34Γ(2)+∑k⩾0(−1)kk+1.15+3k=34−∑k⩾0(−1)k2(5+3k)+32∑k⩾0(−1)kk+1=34+32ln(2)+12(−∑k⩾016k+5+16k+8)=32ln(2e12)+112(∑k⩾01(k+58)(k+86))=32ln(2e12)+112Ψ(86)−Ψ(56)16=32ln(2e12)+12Ψ(43)−12Ψ(56)Ψ(43)=Ψ(13)+3Ψ(13)=−γ−ln(6)−π2cot(π3)+2cos(2π3)ln(sin(π3))=−γ−ln(6)−π23−ln(32)Ψ(56)=−γ−ln(12)−π2cot(5π6)+2cos(2π6)ln(sin(π6))+2cos(4π6)ln(sin(2π6))=−γ−ln(12)+π23+ln(12)−ln(32)
Commented by Mathspace last updated on 24/May/21
thsnkssir
Answered by mathmax by abdo last updated on 26/May/21
Φ=∫0∞e−2xlog(1+e3x)dxbypartsΦ=[−12e−2xlog(1+e3x)]0∞+12∫0∞e−2x×3e3x1+e3xdx=log22+32∫0∞ex1+e3xdxbut∫0∞ex1+e3xdx=ex=t∫0∞t1+t3×dtt=∫1∞dtt3+1F(t)=1t3+1=1(t+1)(t2−t+1)=at+1+bt+ct2−t+1a=13,limt→+∞tF(t)=0=a+b⇒b=−13F(0)=1=a+c⇒c=1−13=23⇒F(t)=13(t+1)+−13t+23t2−t+1=13(t+1)−13t−2t2−t+1⇒∫1∞F(t)dt=[13log∣t+1t2−t+1∣]1∞(→0)+23∫1∞dtt2−t+1∫1∞dtt2−t+1=∫1∞dt(t−12)2+34=t−12=32y→y=2t−13=43∫13∞1y2+132dy=23[arctany]13∞=23(π2−π6)=23.π3=2π33⇒Φ=log22+32.2π33⇒Φ=log22+π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com