Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141931 by mathmax by abdo last updated on 24/May/21

calculate ∫_0 ^∞  e^(−2x) ln(1+e^(3x) )dx

calculate0e2xln(1+e3x)dx

Answered by mindispower last updated on 24/May/21

ln(1+e^(3x) )=3x+ln(1+e^(−3x) )  =∫_0 ^∞ 3xe^(−2x) dx+∫_0 ^∞ e^(−2x) .Σ(((−1)^k )/(k+1))e^(−3(1+k)x) dx  =∫_0 ^∞ (3/4)ye^(−y) dy+Σ_(k≥0) (((−1)^k )/(k+1))∫_0 ^∞ e^(−(5+3k)x) dx  =(3/4)Γ(2)+Σ_(k≥0) (((−1)^k )/(k+1)).(1/(5+3k))  =(3/4)−Σ_(k≥0) (((−1)^k )/(2(5+3k)))+(3/2)Σ_(k≥0) (((−1)^k )/(k+1))  =(3/4)+(3/2)ln(2)+(1/2)(−Σ_(k≥0) (1/(6k+5))+(1/(6k+8)))  =(3/2)ln(2e^(1/2) )+(1/(12))(Σ_(k≥0) (1/((k+(5/8))(k+(8/6)))))  =(3/2)ln(2e^(1/2) )+(1/(12))((Ψ((8/6))−Ψ((5/6)))/(1/6))  =(3/2)ln(2e^(1/2) )+(1/2)Ψ((4/3))−(1/2)Ψ((5/6))  Ψ((4/3))=Ψ((1/3))+3  Ψ((1/3))=−γ−ln(6)−(π/2)cot((π/3))+2cos(((2π)/3))ln(sin((π/3)))  =−γ−ln(6)−(π/(2(√3)))−ln(((√3)/2))  Ψ((5/6))=−γ−ln(12)−(π/2)cot(((5π)/6))+2cos(((2π)/6))ln(sin((π/6)))  +2cos(((4π)/6))ln(sin(((2π)/6)))  =−γ−ln(12)+(π/2)(√3)+ln((1/2))−ln(((√3)/2))

ln(1+e3x)=3x+ln(1+e3x)=03xe2xdx+0e2x.Σ(1)kk+1e3(1+k)xdx=034yeydy+k0(1)kk+10e(5+3k)xdx=34Γ(2)+k0(1)kk+1.15+3k=34k0(1)k2(5+3k)+32k0(1)kk+1=34+32ln(2)+12(k016k+5+16k+8)=32ln(2e12)+112(k01(k+58)(k+86))=32ln(2e12)+112Ψ(86)Ψ(56)16=32ln(2e12)+12Ψ(43)12Ψ(56)Ψ(43)=Ψ(13)+3Ψ(13)=γln(6)π2cot(π3)+2cos(2π3)ln(sin(π3))=γln(6)π23ln(32)Ψ(56)=γln(12)π2cot(5π6)+2cos(2π6)ln(sin(π6))+2cos(4π6)ln(sin(2π6))=γln(12)+π23+ln(12)ln(32)

Commented by Mathspace last updated on 24/May/21

thsnks sir

thsnkssir

Answered by mathmax by abdo last updated on 26/May/21

Φ=∫_0 ^∞  e^(−2x) log(1+e^(3x) )dx  by parts  Φ=[−(1/2)e^(−2x) log(1+e^(3x) )]_0 ^∞ +(1/2)∫_0 ^∞  e^(−2x) ×((3e^(3x) )/(1+e^(3x) ))dx  =((log2)/2) +(3/2)∫_0 ^∞  (e^x /(1+e^(3x) ))dx  but  ∫_0 ^∞  (e^x /(1+e^(3x) ))dx =_(e^x =t)   ∫_0 ^∞   (t/(1+t^3 ))×(dt/t)=∫_1 ^∞ (dt/(t^3 +1))   F(t)=(1/(t^3  +1))=(1/((t+1)(t^2 −t +1)))=(a/(t+1))+((bt +c)/(t^2 −t+1))  a=(1/3),lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/3)  F(0)=1=a+c ⇒c=1−(1/3)=(2/3) ⇒  F(t)=(1/(3(t+1)))+((−(1/3)t+(2/3))/(t^2 −t+1))=(1/(3(t+1)))−(1/3)((t−2)/(t^2 −t +1)) ⇒  ∫_1 ^∞ F(t)dt =[(1/3)log∣((t+1)/( (√(t^2 −t+1))))∣]_1 ^∞ (→0) +(2/3)∫_1 ^∞  (dt/(t^2 −t +1))  ∫_1 ^∞  (dt/(t^2 −t +1))=∫_1 ^∞  (dt/((t−(1/2))^2  +(3/4)))=_(t−(1/2)=((√3)/2)y →y=((2t−1)/( (√3))))   =(4/3)∫_(1/( (√3))) ^∞  (1/(y^2 +1))((√3)/2)dy =(2/( (√3)))[arctany]_(1/( (√3))) ^∞  =(2/( (√3)))((π/2)−(π/6))=(2/( (√3))).(π/3)  =((2π)/(3(√3))) ⇒Φ=((log2)/2)+(3/2).((2π)/(3(√3))) ⇒Φ=((log2)/2) +(π/( (√3)))

Φ=0e2xlog(1+e3x)dxbypartsΦ=[12e2xlog(1+e3x)]0+120e2x×3e3x1+e3xdx=log22+320ex1+e3xdxbut0ex1+e3xdx=ex=t0t1+t3×dtt=1dtt3+1F(t)=1t3+1=1(t+1)(t2t+1)=at+1+bt+ct2t+1a=13,limt+tF(t)=0=a+bb=13F(0)=1=a+cc=113=23F(t)=13(t+1)+13t+23t2t+1=13(t+1)13t2t2t+11F(t)dt=[13logt+1t2t+1]1(0)+231dtt2t+11dtt2t+1=1dt(t12)2+34=t12=32yy=2t13=43131y2+132dy=23[arctany]13=23(π2π6)=23.π3=2π33Φ=log22+32.2π33Φ=log22+π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com