Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 141943 by cesarL last updated on 25/May/21

∫(dx/(x(√(16−4x^2 ))))

dxx164x2

Answered by MJS_new last updated on 25/May/21

∫(dx/(x(√(16−4x^2 ))))=(1/2)∫(dx/(x(√(4−x^2 ))))=       [t=((2+(√(4−x^2 )))/x) → dx=−((x^2 (√(4−x^2 )))/(2(2+(√(4−x^2 )))))dt]  =−(1/4)∫(dt/t)=−(1/4)ln t =  =(1/4)ln ∣x∣ −(1/4)ln (2+(√(4−x^2 ))) +C

dxx164x2=12dxx4x2=[t=2+4x2xdx=x24x22(2+4x2)dt]=14dtt=14lnt==14lnx14ln(2+4x2)+C

Commented by cesarL last updated on 25/May/21

I need with trigonometric sustitution

Ineedwithtrigonometricsustitution

Commented by Ar Brandon last updated on 25/May/21

Then you may let x=2sinθ

Thenyoumayletx=2sinθ

Answered by mathmax by abdo last updated on 25/May/21

Ψ=∫ (dx/(x(√(16−4x^2 )))) ⇒Ψ=∫ (dx/(2x(√(4−x^2 ))))[ changement x=2sint give  Ψ=∫  ((2cost)/(4sint.2cost)) dt =(1/4)∫ (dt/(sint)) =_(tan((t/2))=y)   (1/4)∫   ((2dy)/((1+y^2 )((2y)/(1+y^2 ))))  =(1/4)∫ (dy/y)=(1/4)log∣y∣ +C =(1/4)log∣tan(t/2)∣ +C  t=arcsin((x/2)) ⇒Ψ=(1/4)log∣tan((1/2)arcsin((x/2))∣+C

Ψ=dxx164x2Ψ=dx2x4x2[changementx=2sintgiveΨ=2cost4sint.2costdt=14dtsint=tan(t2)=y142dy(1+y2)2y1+y2=14dyy=14logy+C=14logtant2+Ct=arcsin(x2)Ψ=14logtan(12arcsin(x2)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com