Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 142131 by Avijit007 last updated on 26/May/21

∫(dx/(3+2sinx+cosx))dx

dx3+2sinx+cosxdx

Commented by Avijit007 last updated on 26/May/21

help

help

Answered by 676597498 last updated on 26/May/21

y=(1/(3+((4t)/(1+t^2 ))+((1−t^2 )/(1+t^2 ))))=((1+t^2 )/(3+3t^2 +4t+1−t^2 ))  ⇒ y = ((1+t^2 )/(2t^2 +4t+4))=(1/2)(((1+t^2 )/(t^2 +2t+2)))  t = tan((x/2)) ⇒ dt = (1/2)(1+t^2 )dx  ⇒ dx = (dt/((1/2)(1+t^2 )))    I = ∫(dt/((t+1)^2 +1^2 ))  (t+1)=tanu⇒dt=sec^2 udu  ⇒ I = ∫((sec^2 u)/(tan^2 u+1))=∫du=u+k  I = tan^(−1) (t+1)+k=tan^(−1) (tan((x/2))+1)+k

y=13+4t1+t2+1t21+t2=1+t23+3t2+4t+1t2y=1+t22t2+4t+4=12(1+t2t2+2t+2)t=tan(x2)dt=12(1+t2)dxdx=dt12(1+t2)I=dt(t+1)2+12(t+1)=tanudt=sec2uduI=sec2utan2u+1=du=u+kI=tan1(t+1)+k=tan1(tan(x2)+1)+k

Commented by Avijit007 last updated on 26/May/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com