Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 142150 by iloveisrael last updated on 27/May/21

     Π_(n=1) ^∞  (1+(1/n^4 )) =?

n=1(1+1n4)=?

Commented by liberty last updated on 27/May/21

Π_(n=1) ^∞ (1+(1/n^4 ))=−((sin (((−1))^(1/4)  π)sin ((((−1)^3 ))^(1/4)  π))/π^2 )

n=1(1+1n4)=sin(14π)sin((1)34π)π2

Answered by Dwaipayan Shikari last updated on 27/May/21

Π_(n=1) ^∞ (1+(1/n^4 ))=Π_(n=1) ^∞ (1+(((√i)/n))^2 )(1−(((√i)/n))^2 )  =((sinh((√i)π))/(4π^2 )).((sin((√i)π))/i)=−(((e^(((1+i)/( (√2)))π) −e^(−((1+i)/( (√2)))π) )(e^((i/( (√2)))−(1/( (√2)))π) −e^(−(i/( (√2)))+(1/( (√2)))π) ))/(4π^2 ))  =−((e^((√2)iπ) −e^(−(√2)π) −e^(√(2π)) +e^(−(√2)iπ) )/(4π^2 ))=((cosh((√2)π)−cos((√2)π))/(2π^2 ))

n=1(1+1n4)=n=1(1+(in)2)(1(in)2)=sinh(iπ)4π2.sin(iπ)i=(e1+i2πe1+i2π)(ei212πei2+12π)4π2=e2iπe2πe2π+e2iπ4π2=cosh(2π)cos(2π)2π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com