All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 142171 by iloveisrael last updated on 27/May/21
limx→0x(1−cosx)2sin3x−tan3x=?
Answered by iloveisrael last updated on 27/May/21
limx→0x(2sin2(x2))2tan3x(cos3x−1)=limx→04sin4(x2)tan2x(−2sin2(x2))(cos2x+cosx+1)=13.limx→0−2sin2(x2)tan2x=13.[−2(14)]=−16.
Answered by liberty last updated on 27/May/21
limx→0x(1−(1−12x2))2(x−16x3)3−(x+13x3)3=limx→014x5x3(1−3x26)−x3(1+x2)=14limx→0x2(−32x2)=14×(−23)=−16∦
Answered by som(math1967) last updated on 27/May/21
limx→0x(1−cosx)2sin3x(1−1cos3x)limx→01sinxx×(1−cosx)2sin2x(cos3x−1)×cos3xlimx→0(1−cosx)2cos3x(1−cosx)(1+cosx)(cosx−1)(cos2x+cosx+1)limx→0−cos3x(1+cosx)(cos2x+cosx+1)=−1(1+1)(1+1+1)=−16
Terms of Service
Privacy Policy
Contact: info@tinkutara.com