Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 142228 by mathmax by abdo last updated on 28/May/21

developpf(x)=(2/(3+cosx)) at fourier serie

developpf(x)=23+cosxatfourierserie

Answered by mathmax by abdo last updated on 28/May/21

another way f is even ⇒f(x)=(a_o /2) +Σ_(n=1) ^∞  a_n cos(nx)  a_n =(2/T)∫_([T])  f(x)cos(nx) =(2/(2π))∫_0 ^(2π)  (2/(3+cosx))cos(nx)dx  =(2/π)∫_0 ^(2π) ((cos(nx))/(3+cosx))dx ⇒(π/2)a_n =∫_0 ^(2π)  ((cos(nx))/(3+cosx))dx  =_(e^(ix) =z)    ∫_(∣z∣=1)      (((z^n +z^(−n) )/2)/(3+((z+z^(−1) )/2)))(dz/(iz))=−2i∫_(∣z∣=1)    ((z^n +z^(−n) )/((6+z+z^(−1) )z))dz  =−2i∫_(∣z∣=1)     ((z^n +z^(−n) )/(z^2 +6z +1))dz let ϕ(z)=((z^n +z^(−n) )/(z^2  +6z +1))  poles of ϕ!  Δ^′  =8 ⇒z_1 =−3+2(√2) and z_2 =−3−2(√2) ⇒ϕ(z)=((z^n +z^(−n) )/((z−z_1 )(z−z_2 )))  ∣z_1 ∣−1 =3−2(√2)−1 =2−2(√2)<0  ⇒∣z_1 ∣<1  ∣z_2 ∣−1=3+2(√2)−1 =2+2(√2)>0  (out of circle) ⇒  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,z_1 ) =2iπ((z_1 ^n  +z_1 ^(−n) )/(z_1 −z_2 ))  =((2iπ)/(4(√2))){ (−3+2(√2))^n  +(−3+2(√2))^(−n) }  =((iπ)/(2(√2))){ (−3+2(√2))^n  +(−3+2(√2))^(−n) } ⇒  (π/2)a_n =−2i×((iπ)/(2(√2))){(−3+2(√2))^n  +(−3+2(√2))^(−n) }  =(π/( (√2))){(−3+2(√2))^n [+(−3+2(√2))^n }  ⇒a_n =(√2)(−1)^n { (3−2(√2))^n  +(3−2(√2))^(−n) }  a_o =2(√2)=(2/π)∫_0 ^(2π) (dx/(3+cosx)) ⇒  (2/(3+cosx))=(√2)+(√2)Σ_(n=1) ^∞ (−1)^n {(3−2(√2))^n  +(3−2(√2))^(−n) }cos(nx)

anotherwayfisevenf(x)=ao2+n=1ancos(nx)an=2T[T]f(x)cos(nx)=22π02π23+cosxcos(nx)dx=2π02πcos(nx)3+cosxdxπ2an=02πcos(nx)3+cosxdx=eix=zz∣=1zn+zn23+z+z12dziz=2iz∣=1zn+zn(6+z+z1)zdz=2iz∣=1zn+znz2+6z+1dzletφ(z)=zn+znz2+6z+1polesofφ!Δ=8z1=3+22andz2=322φ(z)=zn+zn(zz1)(zz2)z11=3221=222<0⇒∣z1∣<1z21=3+221=2+22>0(outofcircle)z∣=1φ(z)dz=2iπRes(φ,z1)=2iπz1n+z1nz1z2=2iπ42{(3+22)n+(3+22)n}=iπ22{(3+22)n+(3+22)n}π2an=2i×iπ22{(3+22)n+(3+22)n}=π2{(3+22)n[+(3+22)n}an=2(1)n{(322)n+(322)n}ao=22=2π02πdx3+cosx23+cosx=2+2n=1(1)n{(322)n+(322)n}cos(nx)

Commented by Mathspace last updated on 28/May/21

(2/(3+cosx))=(√2)+(√2)Σ_(n=1) ^∞ (−1)^n {(3−2(√2))^n +(3+2(√2))^(−n) }cos(nx)  a_n =(√2)(−1)^n {(3−2(√2))^n +(3+2(√2))^(−n) }

23+cosx=2+2n=1(1)n{(322)n+(3+22)n}cos(nx)an=2(1)n{(322)n+(3+22)n}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com