All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 142285 by qaz last updated on 29/May/21
L(1+2bttebt)(s)=?
Answered by Dwaipayan Shikari last updated on 29/May/21
L(f(t))(s)=∫0∞f(t)e−stdtL(1+2bttebt)(s)=∫0∞1+2btte−st+btdt=∫0∞e−st+bttdt+2b∫0∞te−st+btdt(s−b)t=u=1(s−b)∫0∞(us−b)−1/2e−udu+2b(1s−b)3/2∫0∞u1/2e−udu=πs−b+bπ(s−b)3/2=π(s−b)(1+bs−b)=πs(s−b)3/2
Answered by mathmax by abdo last updated on 29/May/21
L(1+2bxxebx)(s)=∫0∞1+2bxxebxe−sxdx=∫0∞1+2bxxe−(s−b)xdx=x=t∫0∞1+2bt2te−(s−b)t2(2t)dt=2∫0∞(1+2bt2)e−(s−b)t2dt=2∫0∞e−(s−b)t2dt+4b∫0∞t2e−(s−b)t2dtwehave∫0∞e−(s−b)t2dt=s−bt=z∫0∞e−z2dzs−b=1s−b.π2=π2s−b∫0∞t2e−(s−b)t2dt=s−bt=z∫0∞z2s−be−z2dzs−b=1(s−b)32∫0∞z2e−z2dzbyparts∫0∞z2e−z2dz=−12∫0∞z(−2z)e−z2dz=−12{[ze−z2]0∞−∫0∞e−z2dz}=12.π2=π4⇒L(1+2bxxebx)=πs−b+4b.1(s−b)32.π4=πs−b+bπ(s−b)32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com