Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 142285 by qaz last updated on 29/May/21

L(((1+2bt)/( (√t)))e^(bt) )(s)=?

L(1+2bttebt)(s)=?

Answered by Dwaipayan Shikari last updated on 29/May/21

L(f(t))(s)=∫_0 ^∞ f(t)e^(−st)  dt  L(((1+2bt)/( (√t)))e^(bt) )(s)=∫_0 ^∞ ((1+2bt)/( (√t)))e^(−st+bt) dt  =∫_0 ^∞ (e^(−st+bt) /( (√t)))dt+2b∫_0 ^∞ (√t) e^(−st+bt)  dt     (s−b)t=u  =(1/((s−b)))∫_0 ^∞ ((u/(s−b)))^(−1/2) e^(−u) du+2b((1/(s−b)))^(3/2) ∫_0 ^∞ u^(1/2) e^(−u) du   =((√π)/( (√(s−b))))+((b(√π))/((s−b)^(3/2) ))=(√(π/((s−b)))) (1+(b/(s−b)))=(((√π)s)/((s−b)^(3/2) ))

L(f(t))(s)=0f(t)estdtL(1+2bttebt)(s)=01+2bttest+btdt=0est+bttdt+2b0test+btdt(sb)t=u=1(sb)0(usb)1/2eudu+2b(1sb)3/20u1/2eudu=πsb+bπ(sb)3/2=π(sb)(1+bsb)=πs(sb)3/2

Answered by mathmax by abdo last updated on 29/May/21

L(((1+2bx)/( (√x)))e^(bx) )(s)=∫_0 ^∞  ((1+2bx)/( (√x)))e^(bx)  e^(−sx)  dx  =∫_0 ^∞  ((1+2bx)/( (√x)))e^(−(s−b)x)  dx =_((√x)=t)   ∫_0 ^∞  ((1+2bt^2 )/t)e^(−(s−b)t^2 ) (2t)dt  =2∫_0 ^∞ (1+2bt^2 )e^(−(s−b)t^2 ) dt =2∫_0 ^∞ e^(−(s−b)t^2 ) dt+4b∫_0 ^∞  t^2  e^(−(s−b)t^2 ) dt  we have ∫_0 ^∞  e^(−(s−b)t^2 ) dt =_((√(s−b))t=z)   ∫_0 ^∞  e^(−z^2 ) (dz/( (√(s−b))))=(1/( (√(s−b)))).((√π)/2)  =((√π)/(2(√(s−b))))  ∫_0 ^∞  t^2  e^(−(s−b)t^2 ) dt =_((√(s−b))t=z)   ∫_0 ^∞   (z^2 /(s−b))e^(−z^2 ) (dz/( (√(s−b))))=(1/((s−b)^(3/2) ))∫_0 ^∞  z^2  e^(−z^2 ) dz  by parts  ∫_0 ^∞  z^2  e^(−z^2 ) dz =−(1/2)∫_0 ^∞ z(−2z)e^(−z^2 ) dz  =−(1/2){[ze^(−z^2 ) ]_0 ^∞ −∫_0 ^∞ e^(−z^2 ) dz} =(1/2).((√π)/2)=((√π)/4) ⇒  L(((1+2bx)/( (√x)))e^(bx) ) =((√π)/( (√(s−b))))+4b.(1/((s−b)^(3/2) )).((√π)/4)  =((√π)/( (√(s−b))))+((b(√π))/((s−b)^(3/2) ))

L(1+2bxxebx)(s)=01+2bxxebxesxdx=01+2bxxe(sb)xdx=x=t01+2bt2te(sb)t2(2t)dt=20(1+2bt2)e(sb)t2dt=20e(sb)t2dt+4b0t2e(sb)t2dtwehave0e(sb)t2dt=sbt=z0ez2dzsb=1sb.π2=π2sb0t2e(sb)t2dt=sbt=z0z2sbez2dzsb=1(sb)320z2ez2dzbyparts0z2ez2dz=120z(2z)ez2dz=12{[zez2]00ez2dz}=12.π2=π4L(1+2bxxebx)=πsb+4b.1(sb)32.π4=πsb+bπ(sb)32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com