Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 142347 by mathmax by abdo last updated on 30/May/21

calculate ∫_0 ^∞  ((x^2 logx)/(x^6  +1))dx

calculate0x2logxx6+1dx

Commented by mathmax by abdo last updated on 31/May/21

Φ=∫_0 ^∞  ((x^2 logx)/(1+x^6 ))dx  changement x=t^(1/6)  give  Φ=(1/6)∫_0 ^∞  ((t^(1/3) logt)/(1+t))(1/6)t^((1/6)−1)  dt  =(1/(36))∫_0 ^∞  (t^((1/3)+(1/6)−1) /(1+t))logt dt =(1/(36))∫_0 ^∞  (t^(−(1/2)) /(1+t))logt dt  let f(a)=∫_0 ^∞  (t^(a−1) /(1+t)) dt  we know f(a)=(π/(sin(πa)))  (0<a<1)  and f^′ (a) =∫_0 ^∞  (∂/∂a)( (e^((a−1)logt) /(1+t)))dt =∫_0 ^∞  (t^(a−1) /(1+t))logt dt  but f^′ (a)=−π^2  ((cos(πa))/(sin^2 (πa)))  ⇒Φ=(1/(36))∫_0 ^∞  (t^((1/2)−1) /(1+t))logt dt =(1/(36))f^′ ((1/2))=(1/(36))(−π^2 ).((cos((π/2)))/(sin^2 ((π/2))))  =0

Φ=0x2logx1+x6dxchangementx=t16giveΦ=160t13logt1+t16t161dt=1360t13+1611+tlogtdt=1360t121+tlogtdtletf(a)=0ta11+tdtweknowf(a)=πsin(πa)(0<a<1)andf(a)=0a(e(a1)logt1+t)dt=0ta11+tlogtdtbutf(a)=π2cos(πa)sin2(πa)Φ=1360t1211+tlogtdt=136f(12)=136(π2).cos(π2)sin2(π2)=0

Answered by Dwaipayan Shikari last updated on 31/May/21

I(a)=∫_0 ^∞ (x^a /(x^6 +1))dx  I(a)=(1/6)∫_0 ^∞ (u^((a/6)−(5/6)) /(u+1))du⇒I(a)=(π/(6sin(((a+1)/6)π)))  I′(a)=−(π/(36))cosec(((a+1)/6)π)cot(((a+1)/6)π)=∫_0 ^∞ ((x^a log(x))/(x^6 +1))dx  I′(2)=∫_0 ^∞ ((x^2 log(x))/(x^6 +1))dx=0

I(a)=0xax6+1dxI(a)=160ua656u+1duI(a)=π6sin(a+16π)I(a)=π36cosec(a+16π)cot(a+16π)=0xalog(x)x6+1dxI(2)=0x2log(x)x6+1dx=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com