All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 142347 by mathmax by abdo last updated on 30/May/21
calculate∫0∞x2logxx6+1dx
Commented by mathmax by abdo last updated on 31/May/21
Φ=∫0∞x2logx1+x6dxchangementx=t16giveΦ=16∫0∞t13logt1+t16t16−1dt=136∫0∞t13+16−11+tlogtdt=136∫0∞t−121+tlogtdtletf(a)=∫0∞ta−11+tdtweknowf(a)=πsin(πa)(0<a<1)andf′(a)=∫0∞∂∂a(e(a−1)logt1+t)dt=∫0∞ta−11+tlogtdtbutf′(a)=−π2cos(πa)sin2(πa)⇒Φ=136∫0∞t12−11+tlogtdt=136f′(12)=136(−π2).cos(π2)sin2(π2)=0
Answered by Dwaipayan Shikari last updated on 31/May/21
I(a)=∫0∞xax6+1dxI(a)=16∫0∞ua6−56u+1du⇒I(a)=π6sin(a+16π)I′(a)=−π36cosec(a+16π)cot(a+16π)=∫0∞xalog(x)x6+1dxI′(2)=∫0∞x2log(x)x6+1dx=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com