Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 142349 by mnjuly1970 last updated on 30/May/21

          Σ_(n=0) ^∞ ((ζ(2n+2)(−1)^n )/4^n )=?

$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{2}\right)\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}^{{n}} }=? \\ $$

Answered by Dwaipayan Shikari last updated on 30/May/21

Σ_(n=1) ^∞ (−1)^(n+1) ((ζ(2n))/4^(n−1) )=4Σ_(n=1) ^∞ Σ_(k=1) ^∞ (((−1)^(n+1) )/(4^n k^(2n) ))  =Σ_(k=1) ^∞ (4/(4k^2 +1))=Σ_(k=1) ^∞ (1/(k^2 +((1/2))^2 ))=((π/(2.(1/2)))coth((π/2))−(1/(2((1/2))^2 )))  =πcot((π/2))−2

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{4}^{{n}−\mathrm{1}} }=\mathrm{4}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{4}^{{n}} {k}^{\mathrm{2}{n}} } \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{4}}{\mathrm{4}{k}^{\mathrm{2}} +\mathrm{1}}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }=\left(\frac{\pi}{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}}{coth}\left(\frac{\pi}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\right) \\ $$$$=\pi{cot}\left(\frac{\pi}{\mathrm{2}}\right)−\mathrm{2} \\ $$

Commented by mnjuly1970 last updated on 30/May/21

  thank you so much..

$$\:\:{thank}\:{you}\:{so}\:{much}.. \\ $$

Answered by mnjuly1970 last updated on 30/May/21

    another solution     Σ_(n=1) ^∞ ζ(2n)x^(2n) =^(easy) (1/2)(1−πx.coth(πx))       x:=(i/2) ⇒ Σ_(n=1) ^∞ (((−1)^n ζ(2n))/2^(2n−1) )=1−π((i/2))coth(((πi)/2))           Σ_(n=1) ^∞ (((−1)^n ζ(2n))/2^(2n−2) )=2−πcoth((π/2))         Σ_(n=0) ^∞ (((−1)^n ζ(2n))/2)=πcoth((π/2))−2       m.n

$$\:\:\:\:{another}\:{solution} \\ $$$$\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\zeta\left(\mathrm{2}{n}\right){x}^{\mathrm{2}{n}} \overset{{easy}} {=}\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\pi{x}.{coth}\left(\pi{x}\right)\right) \\ $$$$\:\:\:\:\:{x}:=\frac{{i}}{\mathrm{2}}\:\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }=\mathrm{1}−\pi\left(\frac{{i}}{\mathrm{2}}\right){coth}\left(\frac{\pi{i}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{2}} }=\mathrm{2}−\pi{coth}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}}=\pi{coth}\left(\frac{\pi}{\mathrm{2}}\right)−\mathrm{2} \\ $$$$\:\:\:\:\:{m}.{n} \\ $$

Commented by Dwaipayan Shikari last updated on 30/May/21

Nice sir!

$${Nice}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com