Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 142457 by ajfour last updated on 01/Jun/21

 I=∫(dx/( (√(a^2 −(x+(1/x))))))

$$\:{I}=\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −\left({x}+\frac{\mathrm{1}}{{x}}\right)}} \\ $$

Answered by MJS_new last updated on 01/Jun/21

I′m afraid you′re ending on elliptic functions  again.  my try:  ∫(dx/( (√(a^2 −(x+(1/x))))))=       [t=x+(1/x) → dx=((t+(√(t^2 −4)))/( (√(t^2 −4))))]  =(1/2)∫((t+(√(t^2 −4)))/( (√(t^2 −4))(√(a^2 −t))))dt=  =(1/2)∫(dt/( (√(a^2 −t))))+(1/2)∫(t/( (√(t^2 −4))(√(a^2 −t))))dt=  =−(√(a^2 −t))+(1/2)∫(t/( (√(t^2 −4))(√(a^2 −t))))dt  (1/2)∫(t/( (√(t^2 −4))(√(a^2 −t))))dt=       [u=((√(t^2 −4))/( (√(a^2 −t)))) → dt=−((2(√(t^2 −4))(√((a^2 −t)^3 )))/(t^2 −2a^2 t+4))]  =(1/2)∫du−(1/2)∫(u^2 /( (√(u^4 +4a^2 u^2 +16))))du=  =(u/2)−(1/2)∫(u^2 /( (√(u^4 +4a^2 u^2 +16))))du  and we cannot solve the remaining integral  using elementary calculus

$$\mathrm{I}'\mathrm{m}\:\mathrm{afraid}\:\mathrm{you}'\mathrm{re}\:\mathrm{ending}\:\mathrm{on}\:\mathrm{elliptic}\:\mathrm{functions} \\ $$$$\mathrm{again}. \\ $$$$\mathrm{my}\:\mathrm{try}: \\ $$$$\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −\left({x}+\frac{\mathrm{1}}{{x}}\right)}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\frac{\mathrm{1}}{{x}}\:\rightarrow\:{dx}=\frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\:\sqrt{{a}^{\mathrm{2}} −{t}}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt}= \\ $$$$=−\sqrt{{a}^{\mathrm{2}} −{t}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\:\sqrt{{a}^{\mathrm{2}} −{t}}}\:\rightarrow\:{dt}=−\frac{\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{\left({a}^{\mathrm{2}} −{t}\right)^{\mathrm{3}} }}{{t}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {t}+\mathrm{4}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{du}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{u}^{\mathrm{2}} }{\:\sqrt{{u}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {u}^{\mathrm{2}} +\mathrm{16}}}{du}= \\ $$$$=\frac{{u}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{u}^{\mathrm{2}} }{\:\sqrt{{u}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {u}^{\mathrm{2}} +\mathrm{16}}}{du} \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{integral} \\ $$$$\mathrm{using}\:\mathrm{elementary}\:\mathrm{calculus} \\ $$

Commented by ajfour last updated on 01/Jun/21

I=∫((u^2 du)/( (√((u^2 +2a^2 )^2 −4(a^4 −4)))))  I=∫(du/( (√((1+((2a^2 )/u^2 ))^2 −((s/u^2 ))^2 ))))  let    ((2a^2 )/u^2 )=cos 2θ  u^2 =2a^2 sec 2θ  2udu=4a^2 sec 2θ(√(sec^2 2θ−1))dθ  du=(√2)asec 2θ(√(sec 2θ−cos 2θ))  I=∫(((√2)asec 2θ(√(sec 2θ−cos 2θ))dθ)/( (√(4cos^4 θ−(s^2 /(4a^4 ))cos^2 2θ))))  I=∫(((√2)asin 2θdθ)/( (√((1+cos 2θ)^2 cos 2θ−(s^2 /(4a^4 ))cos^3 2θ))))  I=−(a/( (√2)))∫(dz/( (√(z(1+z)^2 −m^2 z^3 ))))  ...

$${I}=\int\frac{{u}^{\mathrm{2}} {du}}{\:\sqrt{\left({u}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left({a}^{\mathrm{4}} −\mathrm{4}\right)}} \\ $$$${I}=\int\frac{{du}}{\:\sqrt{\left(\mathrm{1}+\frac{\mathrm{2}{a}^{\mathrm{2}} }{{u}^{\mathrm{2}} }\right)^{\mathrm{2}} −\left(\frac{{s}}{{u}^{\mathrm{2}} }\right)^{\mathrm{2}} }} \\ $$$${let}\:\:\:\:\frac{\mathrm{2}{a}^{\mathrm{2}} }{{u}^{\mathrm{2}} }=\mathrm{cos}\:\mathrm{2}\theta \\ $$$${u}^{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \mathrm{sec}\:\mathrm{2}\theta \\ $$$$\mathrm{2}{udu}=\mathrm{4}{a}^{\mathrm{2}} \mathrm{sec}\:\mathrm{2}\theta\sqrt{\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}\theta−\mathrm{1}}{d}\theta \\ $$$${du}=\sqrt{\mathrm{2}}{a}\mathrm{sec}\:\mathrm{2}\theta\sqrt{\mathrm{sec}\:\mathrm{2}\theta−\mathrm{cos}\:\mathrm{2}\theta} \\ $$$${I}=\int\frac{\sqrt{\mathrm{2}}{a}\mathrm{sec}\:\mathrm{2}\theta\sqrt{\mathrm{sec}\:\mathrm{2}\theta−\mathrm{cos}\:\mathrm{2}\theta}{d}\theta}{\:\sqrt{\mathrm{4cos}\:^{\mathrm{4}} \theta−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{4}} }\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}\theta}} \\ $$$${I}=\int\frac{\sqrt{\mathrm{2}}{a}\mathrm{sin}\:\mathrm{2}\theta{d}\theta}{\:\sqrt{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right)^{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\theta−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{4}} }\mathrm{cos}\:^{\mathrm{3}} \mathrm{2}\theta}} \\ $$$${I}=−\frac{{a}}{\:\sqrt{\mathrm{2}}}\int\frac{{dz}}{\:\sqrt{{z}\left(\mathrm{1}+{z}\right)^{\mathrm{2}} −{m}^{\mathrm{2}} {z}^{\mathrm{3}} }} \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com