All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 142457 by ajfour last updated on 01/Jun/21
I=∫dxa2−(x+1x)
Answered by MJS_new last updated on 01/Jun/21
I′mafraidyou′reendingonellipticfunctionsagain.mytry:∫dxa2−(x+1x)=[t=x+1x→dx=t+t2−4t2−4]=12∫t+t2−4t2−4a2−tdt==12∫dta2−t+12∫tt2−4a2−tdt==−a2−t+12∫tt2−4a2−tdt12∫tt2−4a2−tdt=[u=t2−4a2−t→dt=−2t2−4(a2−t)3t2−2a2t+4]=12∫du−12∫u2u4+4a2u2+16du==u2−12∫u2u4+4a2u2+16duandwecannotsolvetheremainingintegralusingelementarycalculus
Commented by ajfour last updated on 01/Jun/21
I=∫u2du(u2+2a2)2−4(a4−4)I=∫du(1+2a2u2)2−(su2)2let2a2u2=cos2θu2=2a2sec2θ2udu=4a2sec2θsec22θ−1dθdu=2asec2θsec2θ−cos2θI=∫2asec2θsec2θ−cos2θdθ4cos4θ−s24a4cos22θI=∫2asin2θdθ(1+cos2θ)2cos2θ−s24a4cos32θI=−a2∫dzz(1+z)2−m2z3...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com