Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 142528 by mohammad17 last updated on 01/Jun/21

∫_1 ^( ∞)  (dx/(e^x −2^x ))

$$\int_{\mathrm{1}} ^{\:\infty} \:\frac{{dx}}{{e}^{{x}} −\mathrm{2}^{{x}} } \\ $$

Answered by mathmax by abdo last updated on 02/Jun/21

Φ=∫_1 ^∞  (dx/(e^x −2^x )) ⇒Φ=∫_1 ^∞  (e^(−x) /(1−2^x e^(−x) ))dx =∫_1 ^∞  ((e^(−x) dx)/(1−((2/e))^x ))  (∣(2/e)∣<1)  =∫_1 ^∞  e^(−x)  Σ_(n=0) ^∞  ((2/e))^(nx)  dx =Σ_(n=0) ^∞  ∫_1 ^∞  e^(−x)  2^(nx)  e^(−nx)  dx  =Σ_(n=0) ^∞  ∫_1 ^∞  e^(−(n+1)x)  2^(nx) dx =Σ_(n=0) ^∞  ∫_1 ^∞ e^(−(n+1)x) e^(nxlog2)  ex  =Σ_(n=0) ^∞  ∫_1 ^∞  e^((nlog2−n−1)x) dx =Σ_(n=0) ^∞  [(1/(nlog2−n−1))e^((nlog2−n−1)x) ]_1 ^∞   =−Σ_(n=0) ^∞  (1/(nlog2−n−1)) =Σ_(n=0) ^∞  (1/(n+1−nlog2))  ⇒Φ=1+(1/(2−log2))+(1/(3−2log2))+(1/(4−3log2))+....

$$\Phi=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} −\mathrm{2}^{\mathrm{x}} }\:\Rightarrow\Phi=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}} }{\mathrm{1}−\mathrm{2}^{\mathrm{x}} \mathrm{e}^{−\mathrm{x}} }\mathrm{dx}\:=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}} \mathrm{dx}}{\mathrm{1}−\left(\frac{\mathrm{2}}{\mathrm{e}}\right)^{\mathrm{x}} }\:\:\left(\mid\frac{\mathrm{2}}{\mathrm{e}}\mid<\mathrm{1}\right) \\ $$$$=\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{2}}{\mathrm{e}}\right)^{\mathrm{nx}} \:\mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \:\mathrm{2}^{\mathrm{nx}} \:\mathrm{e}^{−\mathrm{nx}} \:\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} \:\mathrm{2}^{\mathrm{nx}} \mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} \mathrm{e}^{\mathrm{nxlog2}} \:\mathrm{ex} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{1}} ^{\infty} \:\mathrm{e}^{\left(\mathrm{nlog2}−\mathrm{n}−\mathrm{1}\right)\mathrm{x}} \mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left[\frac{\mathrm{1}}{\mathrm{nlog2}−\mathrm{n}−\mathrm{1}}\mathrm{e}^{\left(\mathrm{nlog2}−\mathrm{n}−\mathrm{1}\right)\mathrm{x}} \right]_{\mathrm{1}} ^{\infty} \\ $$$$=−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{nlog2}−\mathrm{n}−\mathrm{1}}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}−\mathrm{nlog2}} \\ $$$$\Rightarrow\Phi=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}−\mathrm{log2}}+\frac{\mathrm{1}}{\mathrm{3}−\mathrm{2log2}}+\frac{\mathrm{1}}{\mathrm{4}−\mathrm{3log2}}+.... \\ $$

Commented by mohammad17 last updated on 02/Jun/21

thank you sir cqn you complete

$${thank}\:{you}\:{sir}\:{cqn}\:{you}\:{complete} \\ $$

Commented by Mathspace last updated on 02/Jun/21

this is the answer by series...

$${this}\:{is}\:{the}\:{answer}\:{by}\:{series}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com