Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 142655 by mnjuly1970 last updated on 03/Jun/21

  evaluate.....           Σ_(n=1) ^∞ (((n.cos(nπ))/(Γ (2n+2))))=? .....     .......

$$\:\:{evaluate}..... \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{n}.{cos}\left({n}\pi\right)}{\Gamma\:\left(\mathrm{2}{n}+\mathrm{2}\right)}\right)=?\:..... \\ $$$$\:\:\:....... \\ $$

Answered by qaz last updated on 03/Jun/21

Σ_(n=1) ^∞ ((n∙cos (nπ))/(Γ(2n+2)))  =ℜΣ_(n=1) ^∞ ((n∙e^(inπ) )/((2n+1)!))  =Σ_(n=1) ^∞ ((n∙(−1)^n )/((2n+1)!))  =Σ_(n=0) ^∞ ((n∙(−1)^n )/((2n+1)!))x^(2n+1) ∣_(x=1)   =(1/2)Σ_(n=0) ^∞ [(((2n+1))/((2n+1)!))(−1)^n x^(2n+1) −(((−1)^n x^(2n+1) )/((2n+1)!))]_(x=1)   =(1/2)(xDsin x−sin x)∣_(x=1)   =(1/2)(xcos x−sin x)∣_(x=1)   =(1/2)(cos 1−sin 1)  nice problem .sir

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{n}\centerdot\mathrm{cos}\:\left(\mathrm{n}\pi\right)}{\Gamma\left(\mathrm{2n}+\mathrm{2}\right)} \\ $$$$=\Re\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{n}\centerdot\mathrm{e}^{\mathrm{in}\pi} }{\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{n}\centerdot\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$$$=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{n}\centerdot\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{x}^{\mathrm{2n}+\mathrm{1}} \mid_{\mathrm{x}=\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\left(\mathrm{2n}+\mathrm{1}\right)}{\left(\mathrm{2n}+\mathrm{1}\right)!}\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{2n}+\mathrm{1}} −\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\right]_{\mathrm{x}=\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{xDsin}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)\mid_{\mathrm{x}=\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{xcos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)\mid_{\mathrm{x}=\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{1}−\mathrm{sin}\:\mathrm{1}\right) \\ $$$$\mathrm{nice}\:\mathrm{problem}\:.\mathrm{sir} \\ $$

Commented by mnjuly1970 last updated on 03/Jun/21

thanks alot mr qaz   very nice as always...

$${thanks}\:{alot}\:{mr}\:{qaz} \\ $$$$\:{very}\:{nice}\:{as}\:{always}... \\ $$

Answered by Dwaipayan Shikari last updated on 03/Jun/21

Σ_(n=1) ^∞ (((−1)^(n+1) n)/((2n+1)!))  Σ_(n=1) ^∞ (((−1)^(n+1) x^(2n+1) )/((2n+1)!))=sin(x)  Σ_(n=1) ^∞ (((−1)^(n+1) x^n )/((2n+1)!))=((sin((√x)))/( (√x)))  D.B.S.W.R.T.x∣_(x=1)   Σ_(n=1) ^∞ (((−1)^n n)/((2n+1)!))=(d/dx)∣_(x=1) ((sin((√x)))/( (√x)))=(((1/2)cos((√x))−(1/(2(√x)))sin((√x)))/x)∣_(x=1)   =(1/2)(cos1−sin1)

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}={sin}\left({x}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\frac{{sin}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}} \\ $$$${D}.{B}.{S}.{W}.{R}.{T}.{x}\mid_{{x}=\mathrm{1}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\frac{{d}}{{dx}}\mid_{{x}=\mathrm{1}} \frac{{sin}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}=\frac{\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\sqrt{{x}}\right)−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{sin}\left(\sqrt{{x}}\right)}{{x}}\mid_{{x}=\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\mathrm{1}−{sin}\mathrm{1}\right) \\ $$

Commented by mnjuly1970 last updated on 03/Jun/21

thanks alot grateful...    Differentiation both sides with the  respect   to  x

$${thanks}\:{alot}\:{grateful}... \\ $$$$\:\:{Differentiation}\:{both}\:{sides}\:{with}\:{the}\:\:{respect} \\ $$$$\:{to}\:\:{x}\:\:\: \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jun/21

Hahahha

$${Hahahha} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com