Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 142656 by qaz last updated on 03/Jun/21

∫_(−π) ^π ((xsin x)/(1+x^2 ))dx=?

$$\int_{−\pi} ^{\pi} \frac{\mathrm{xsin}\:\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=? \\ $$

Answered by Ar Brandon last updated on 03/Jun/21

ξ(a)=∫_0 ^π ((xsin(ax))/(1+x^2 ))dx⇒ξ′(a)=∫_0 ^π ((x^2 cos(ax))/(1+x^2 ))dx  ξ′(a)=∫_0 ^π cos(ax)dx−∫_0 ^π ((cos(ax))/(1+x^2 ))dx=−∫_0 ^π ((cos(ax))/(1+x^2 ))dx  ξ′′(a)=∫_0 ^π ((xsin(ax))/(1+x^2 ))dx=ξ(a)⇒ξ′′(a)−ξ(a)=0  ξ(a)=αe^a +βe^(−a) , ξ(0)=α+β=0...eqn(1)  ξ′(a)=αe^a −βe^(−a) , ξ′(0)=α−β=π−tan^(−1) (π)...eqn(2)  eqn(1) & eqn(2) ⇒2α=π−tan^(−1) (π), 2β=tan^(−1) (π)−π  ⇒ξ(a)=(1/2)(π−tan^(−1) (π))(e^a −e^(−a) )=(π−tan^(−1) (π))sinh(a)  ∫_(−π) ^π ((xsinx)/(1+x^2 ))dx=2ξ(1)=2(π−tan^(−1) (π))sinh(1)

$$\xi\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\Rightarrow\xi'\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$\xi'\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \mathrm{cos}\left(\mathrm{ax}\right)\mathrm{dx}−\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=−\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$\xi''\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\xi\left(\mathrm{a}\right)\Rightarrow\xi''\left(\mathrm{a}\right)−\xi\left(\mathrm{a}\right)=\mathrm{0} \\ $$$$\xi\left(\mathrm{a}\right)=\alpha\mathrm{e}^{\mathrm{a}} +\beta\mathrm{e}^{−\mathrm{a}} ,\:\xi\left(\mathrm{0}\right)=\alpha+\beta=\mathrm{0}...\mathrm{eqn}\left(\mathrm{1}\right) \\ $$$$\xi'\left(\mathrm{a}\right)=\alpha\mathrm{e}^{\mathrm{a}} −\beta\mathrm{e}^{−\mathrm{a}} ,\:\xi'\left(\mathrm{0}\right)=\alpha−\beta=\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)...\mathrm{eqn}\left(\mathrm{2}\right) \\ $$$$\mathrm{eqn}\left(\mathrm{1}\right)\:\&\:\mathrm{eqn}\left(\mathrm{2}\right)\:\Rightarrow\mathrm{2}\alpha=\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right),\:\mathrm{2}\beta=\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)−\pi \\ $$$$\Rightarrow\xi\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)\right)\left(\mathrm{e}^{\mathrm{a}} −\mathrm{e}^{−\mathrm{a}} \right)=\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)\right)\mathrm{sinh}\left(\mathrm{a}\right) \\ $$$$\int_{−\pi} ^{\pi} \frac{\mathrm{xsinx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\mathrm{2}\xi\left(\mathrm{1}\right)=\mathrm{2}\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)\right)\mathrm{sinh}\left(\mathrm{1}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 03/Jun/21

Nice!

$${Nice}! \\ $$

Commented by Ar Brandon last updated on 03/Jun/21

Yes bro. But final answer seems not to  be correct. Still checking...

$$\mathrm{Yes}\:\mathrm{bro}.\:\mathrm{But}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{seems}\:\mathrm{not}\:\mathrm{to} \\ $$$$\mathrm{be}\:\mathrm{correct}.\:\mathrm{Still}\:\mathrm{checking}... \\ $$

Commented by qaz last updated on 03/Jun/21

∫_(−π) ^π cos (ax)dx≠0

$$\int_{−\pi} ^{\pi} \mathrm{cos}\:\left(\mathrm{ax}\right)\mathrm{dx}\neq\mathrm{0} \\ $$

Commented by Ar Brandon last updated on 03/Jun/21

Hmmm...   Right answer is approximately  1,682 984 232. Help if possible.

$$\mathrm{Hmmm}...\: \\ $$$$\mathrm{Right}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{approximately} \\ $$$$\mathrm{1},\mathrm{682}\:\mathrm{984}\:\mathrm{232}.\:\mathrm{Help}\:\mathrm{if}\:\mathrm{possible}. \\ $$

Commented by mindispower last updated on 03/Jun/21

nice sir

$${nice}\:{sir}\: \\ $$

Answered by mindispower last updated on 04/Jun/21

∫_0 ^π ((2xsin(x))/((x+i)(x−i)))dx  =Re{∫_0 ^π ((sin(x))/(x+i))dx}  =Re∫_i ^(π+i) ((sin(t−i))/t)dt  =Re∫_i ^(π+i) ((sin(t)cos(i)−cos(t)sin(i))/t)  =Re{cos(i)∫_i ^(π+i) ((sin(t))/t)dt−sin(i)∫_i ^(π+i) ((cos(t))/t)dx}  =Re{cos(i)(Si(π+i)−Si(i))−sin(i)(Ci(i)−Ci(i+π)}  cos(i)=ch(1),sin(i)=ish(1)  Si=∫_0 ^x ((sin(t))/t),Ci=∫_x ^∞ ((cos(t))/t)dt  =(1/2)ch(1)(si(π+i)+si(π−i)−si(i)−si(−i))  −sh(1)(iCi(i)−iCi(i+π))−sh(−iCi(−i)+iCi(π−i))

$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{2}{xsin}\left({x}\right)}{\left({x}+{i}\right)\left({x}−{i}\right)}{dx} \\ $$$$={Re}\left\{\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left({x}\right)}{{x}+{i}}{dx}\right\} \\ $$$$={Re}\int_{{i}} ^{\pi+{i}} \frac{{sin}\left({t}−{i}\right)}{{t}}{dt} \\ $$$$={Re}\int_{{i}} ^{\pi+{i}} \frac{{sin}\left({t}\right){cos}\left({i}\right)−{cos}\left({t}\right){sin}\left({i}\right)}{{t}} \\ $$$$={Re}\left\{{cos}\left({i}\right)\int_{{i}} ^{\pi+{i}} \frac{{sin}\left({t}\right)}{{t}}{dt}−{sin}\left({i}\right)\int_{{i}} ^{\pi+{i}} \frac{{cos}\left({t}\right)}{{t}}{dx}\right\} \\ $$$$={Re}\left\{{cos}\left({i}\right)\left({Si}\left(\pi+{i}\right)−{Si}\left({i}\right)\right)−{sin}\left({i}\right)\left({Ci}\left({i}\right)−{Ci}\left({i}+\pi\right)\right\}\right. \\ $$$${cos}\left({i}\right)={ch}\left(\mathrm{1}\right),{sin}\left({i}\right)={ish}\left(\mathrm{1}\right) \\ $$$${Si}=\int_{\mathrm{0}} ^{{x}} \frac{{sin}\left({t}\right)}{{t}},{Ci}=\int_{{x}} ^{\infty} \frac{{cos}\left({t}\right)}{{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ch}\left(\mathrm{1}\right)\left({si}\left(\pi+{i}\right)+{si}\left(\pi−{i}\right)−{si}\left({i}\right)−{si}\left(−{i}\right)\right) \\ $$$$−{sh}\left(\mathrm{1}\right)\left({iCi}\left({i}\right)−{iCi}\left({i}+\pi\right)\right)−{sh}\left(−{iCi}\left(−{i}\right)+{iCi}\left(\pi−{i}\right)\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com