All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 14267 by Tinkutara last updated on 30/May/17
Ifsin3x+cos3x+3sinxcosx−1=0,thenfindx.
Answered by linkelly0615 last updated on 30/May/17
set{A=sinx+cosxB=sinx−cosx⇒sin3x+cos3x+3sinxcosx−1=0⇒A(A2−2sinxcosx)−3Asinxcosx+3sinxcosx−1=0⇒(1−A)[3sinxcosx−(1+A+A2)]=0⇒(1−A)[34(A2−B2)−(1+A+A2)]=0⇒(A−1){14[(A+2)2+3B2]}=0⇒A=1or{A=(−2)B=0!!BUT!!∵A=sinx+cosx=2sin(x+π4)∴∣A∣⩽2⇒Awon′tbe(−2)⇒so,A=1{sorry,that′smyfault.}⇒sinx+cosx=1[sinx+cosx=2(sinx2+cosx2)=2sin(x+π4)]⇒sin(x+π/4)=1/2⇒x+π/4=2kπ+π/4or2kπ+3π/4,k∈Z⇒x=2kπor(2k+12)π,k∈Z
Commented by Tinkutara last updated on 30/May/17
Canyouexplainthelastline?Mydoubtissinx=0impliesx=nπandcosx=0impliesx=(2n+1)π2.Thenwhyyouhavewrittenx=2kπor(2k+12)π?
Terms of Service
Privacy Policy
Contact: info@tinkutara.com