Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 14269 by myintkhaing last updated on 30/May/17

In ΔABC, if sinA+sinB+sinC.=cosA+cosB+cosC+1,  then prove that ΔABC is a right triangle.

$${In}\:\Delta{ABC},\:{if}\:{sinA}+{sinB}+{sinC}.={cosA}+{cosB}+{cosC}+\mathrm{1}, \\ $$$${then}\:{prove}\:{that}\:\Delta{ABC}\:{is}\:{a}\:{right}\:{triangle}. \\ $$

Answered by prakash jain last updated on 30/May/17

sin A−cos A+sin B−cos B+sin C−cos C=1  cos A=sin ((π/2)−A)  sin A−sin ((π/2)−A)=2cos ((π/4))sin (A−(π/4))  =(√2)sin (A−(π/4))  sin (A−(π/4))+sin (B−(π/4))+sin (C−(π/4))=(1/(√2))=sin ((π/4))  sin (A−(π/4))+sin (B−(π/4))=sin (π/4)−sin (C−(π/4))  2sin (((A+B)/2)−(π/4))cos (((A−B)/2))=2cos (C/2)sin ((π/4)−(C/2))  2sin (((π−C)/2)−(π/4))cos (((A−B)/2))=2cos (C/2)sin ((π/4)−(C/2))  sin ((π/4)−(C/2))cos (((A−B)/2))=cos (C/2)sin ((π/4)−(C/2))  sin ((π/4)−(C/2))[cos (((A−B)/2))−cos (C/2)]=0  either  case 1       sin ((π/4)−(C/2))=0⇒C=(π/2)  or        cos (((A−B)/2))=cos (C/2)        case 2: (C/2)=((A−B)/2)⇒π−A−B=A−B⇒A=(π/2)        case 3:          (C/2)=2π−((A−B)/2)           ((π−A−B)/2)=((4π−A+B)/2)           B=−((3π)/2)⇒B=(π/2)  In all the cases one of the angles=(π/2)■

$$\mathrm{sin}\:\mathrm{A}−\mathrm{cos}\:\mathrm{A}+\mathrm{sin}\:\mathrm{B}−\mathrm{cos}\:\mathrm{B}+\mathrm{sin}\:{C}−\mathrm{cos}\:{C}=\mathrm{1} \\ $$$$\mathrm{cos}\:{A}=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−{A}\right) \\ $$$$\mathrm{sin}\:{A}−\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−{A}\right)=\mathrm{2cos}\:\left(\frac{\pi}{\mathrm{4}}\right)\mathrm{sin}\:\left({A}−\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\sqrt{\mathrm{2}}\mathrm{sin}\:\left({A}−\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{sin}\:\left({A}−\frac{\pi}{\mathrm{4}}\right)+\mathrm{sin}\:\left({B}−\frac{\pi}{\mathrm{4}}\right)+\mathrm{sin}\:\left({C}−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{sin}\:\left({A}−\frac{\pi}{\mathrm{4}}\right)+\mathrm{sin}\:\left({B}−\frac{\pi}{\mathrm{4}}\right)=\mathrm{sin}\:\frac{\pi}{\mathrm{4}}−\mathrm{sin}\:\left({C}−\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{2sin}\:\left(\frac{{A}+{B}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)=\mathrm{2cos}\:\frac{{C}}{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{C}}{\mathrm{2}}\right) \\ $$$$\mathrm{2sin}\:\left(\frac{\pi−{C}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)=\mathrm{2cos}\:\frac{{C}}{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{C}}{\mathrm{2}}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{C}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)=\mathrm{cos}\:\frac{{C}}{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{C}}{\mathrm{2}}\right) \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{C}}{\mathrm{2}}\right)\left[\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)−\mathrm{cos}\:\frac{{C}}{\mathrm{2}}\right]=\mathrm{0} \\ $$$${either}\:\:\mathrm{case}\:\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{C}}{\mathrm{2}}\right)=\mathrm{0}\Rightarrow{C}=\frac{\pi}{\mathrm{2}} \\ $$$${or} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\left(\frac{{A}−{B}}{\mathrm{2}}\right)=\mathrm{cos}\:\frac{{C}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:{case}\:\mathrm{2}:\:\frac{{C}}{\mathrm{2}}=\frac{{A}−{B}}{\mathrm{2}}\Rightarrow\pi−{A}−{B}={A}−{B}\Rightarrow{A}=\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:{case}\:\mathrm{3}: \\ $$$$\:\:\:\:\:\:\:\:\frac{{C}}{\mathrm{2}}=\mathrm{2}\pi−\frac{{A}−{B}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\pi−{A}−{B}}{\mathrm{2}}=\frac{\mathrm{4}\pi−{A}+{B}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{B}=−\frac{\mathrm{3}\pi}{\mathrm{2}}\Rightarrow{B}=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{In}\:\mathrm{all}\:\mathrm{the}\:\mathrm{cases}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angles}=\frac{\pi}{\mathrm{2}}\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com