Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 142829 by liberty last updated on 06/Jun/21

 Find the simplest form for     T = (√(1+(√(−3)))) +(√(1−(√(−3))))

$$\:{Find}\:{the}\:{simplest}\:{form}\:{for}\: \\ $$$$\:\:{T}\:=\:\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}\:+\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}\: \\ $$

Answered by EDWIN88 last updated on 06/Jun/21

Let (√a) +(√(−b)) = (√(1+(√(−3)))) with a>0 ,b>0  ⇒a−b+2i(√(ab)) = 1+i(√3) we get  { ((a−b=1)),((2(√(ab)) =(√3))) :}   squaring  { ((a^2 −2ab+b^2 =1...(1))),((4ab=3...(2))) :}  addition of (1) and (2) we have   a^2 +2ab+b^2  = 4 ⇒a+b = 2  now we solve  { ((a−b=1)),((a+b=2)) :} ⇒ { ((a=(3/2))),((b=(1/2))) :}  hence (√(1+(√(−3)))) = (√(3/2)) +(√(−(1/2)))  in a similar manner we obtain   (√(1−(√(−3)))) = (√(3/2))−(√(−(1/2)))   Therefore T= (√(3/2))+(√(−(1/2)))+(√(3/2))−(√(−(1/2)))   T = 2(√(3/2)) =(√6) □

$$\mathrm{Let}\:\sqrt{\mathrm{a}}\:+\sqrt{−\mathrm{b}}\:=\:\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}\:\mathrm{with}\:\mathrm{a}>\mathrm{0}\:,\mathrm{b}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{a}−\mathrm{b}+\mathrm{2}{i}\sqrt{\mathrm{ab}}\:=\:\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\mathrm{we}\:\mathrm{get}\:\begin{cases}{\mathrm{a}−\mathrm{b}=\mathrm{1}}\\{\mathrm{2}\sqrt{\mathrm{ab}}\:=\sqrt{\mathrm{3}}}\end{cases} \\ $$$$\:\mathrm{squaring}\:\begin{cases}{\mathrm{a}^{\mathrm{2}} −\mathrm{2ab}+\mathrm{b}^{\mathrm{2}} =\mathrm{1}...\left(\mathrm{1}\right)}\\{\mathrm{4ab}=\mathrm{3}...\left(\mathrm{2}\right)}\end{cases} \\ $$$$\mathrm{addition}\:\mathrm{of}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{2ab}+\mathrm{b}^{\mathrm{2}} \:=\:\mathrm{4}\:\Rightarrow\mathrm{a}+\mathrm{b}\:=\:\mathrm{2} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{solve}\:\begin{cases}{\mathrm{a}−\mathrm{b}=\mathrm{1}}\\{\mathrm{a}+\mathrm{b}=\mathrm{2}}\end{cases}\:\Rightarrow\begin{cases}{\mathrm{a}=\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{b}=\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{hence}\:\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}\:=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\:+\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{manner}\:\mathrm{we}\:\mathrm{obtain}\: \\ $$$$\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}\:=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}−\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}\: \\ $$$$\mathrm{Therefore}\:\mathrm{T}=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}+\cancel{\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}}+\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}−\cancel{\sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}}\: \\ $$$$\mathrm{T}\:=\:\mathrm{2}\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\:=\sqrt{\mathrm{6}}\:\Box \\ $$

Commented by liberty last updated on 06/Jun/21

thank you

$${thank}\:{you} \\ $$

Answered by mr W last updated on 06/Jun/21

1+(√(−3))=1+(√3)i=2e^((πi)/3)   ⇒(√(1+(√(−3))))=(√2)e^((πi)/6)   similarly  ⇒(√(1−(√(−3))))=(√2)e^(−((πi)/6))   (√(1+(√(−3))))+(√(1−(√(−3))))=(√2)(e^((πi)/6) +e^(−((πi)/6)) )  =(√2)×2×cos (π/6)=(√2)×2×((√3)/2)=(√6)

$$\mathrm{1}+\sqrt{−\mathrm{3}}=\mathrm{1}+\sqrt{\mathrm{3}}{i}=\mathrm{2}{e}^{\frac{\pi{i}}{\mathrm{3}}} \\ $$$$\Rightarrow\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}{e}^{\frac{\pi{i}}{\mathrm{6}}} \\ $$$${similarly} \\ $$$$\Rightarrow\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}{e}^{−\frac{\pi{i}}{\mathrm{6}}} \\ $$$$\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}+\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}\left({e}^{\frac{\pi{i}}{\mathrm{6}}} +{e}^{−\frac{\pi{i}}{\mathrm{6}}} \right) \\ $$$$=\sqrt{\mathrm{2}}×\mathrm{2}×\mathrm{cos}\:\frac{\pi}{\mathrm{6}}=\sqrt{\mathrm{2}}×\mathrm{2}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\sqrt{\mathrm{6}} \\ $$

Commented by liberty last updated on 06/Jun/21

thank you

$${thank}\:{you} \\ $$

Answered by mathmax by abdo last updated on 06/Jun/21

T=(√(1+(√(−3))+(√(1−(√(−3))))))  we have 1+(√(−3))=1+i(√3)=2((1/2)+i((√3)/2))=2e^((iπ)/3)  ⇒  (√(1+(√(−3))))=(√2)e^((iπ)/6)   also 1−(√(−3))=1−i(√3)=2e^(−((iπ)/3))  ⇒(√(1−(√(−3))))=(√2)e^(−((iπ)/6))  ⇒  T=(√2)(e^((iπ)/6)  +e^(−((iπ)/6)) ) =(√2)(2cos((π/6)))=2(√2).((√3)/2) =(√6)

$$\mathrm{T}=\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}+\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{1}+\sqrt{−\mathrm{3}}=\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2e}^{\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow \\ $$$$\sqrt{\mathrm{1}+\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{6}}} \\ $$$$\mathrm{also}\:\mathrm{1}−\sqrt{−\mathrm{3}}=\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}=\mathrm{2e}^{−\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow\sqrt{\mathrm{1}−\sqrt{−\mathrm{3}}}=\sqrt{\mathrm{2}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{6}}} \:\Rightarrow \\ $$$$\mathrm{T}=\sqrt{\mathrm{2}}\left(\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{6}}} \:+\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{6}}} \right)\:=\sqrt{\mathrm{2}}\left(\mathrm{2cos}\left(\frac{\pi}{\mathrm{6}}\right)\right)=\mathrm{2}\sqrt{\mathrm{2}}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\sqrt{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com