Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 142869 by mathmax by abdo last updated on 06/Jun/21

calculate ∫_(−∞) ^(+∞)   ((x^2 dx)/((x^2 −x+3)^2 ))

calculate+x2dx(x2x+3)2

Answered by Ar Brandon last updated on 06/Jun/21

Ψ=∫_(−∞) ^∞ ((x^2 dx)/((x^2 −x+3)^2 ))  ∫((x^2 dx)/((x^2 −x+3)^2 ))=((ax+b)/(x^2 −x+3))+∫((cx+d)/(x^2 −x+3))dx  ⇒((x^2 dx)/((x^2 −x+3)^2 ))=((a(x^2 −x+3)−(ax+b)(2x−1))/((x^2 −x+3)^2 ))+(((cx+d)(x^2 −x+3))/((x^2 −x+3)^2 ))  c=0, a−2a−c+d=1⇒d=a+1, −a+a−2b+3c−d=0⇒d=−2b  3a+b+3d=0⇒6a−a−1+6a+6=0⇒a=−(5/(11)), d=(6/(11)), b=−(3/(11))  Ψ=[−((5x+3)/(11(x^2 −x+3)))+(6/(11))∫(dx/(x^2 −x+3))]_(−∞) ^∞       =(6/(11))∫_(−∞) ^∞ (dx/((x−(1/2))^2 +((11)/4)))=[(6/(11))∙(2/( (√(11))))arctan(((2x−1)/( (√(11)))) )]_(−∞) ^∞  =((12(√(11)))/(121))π

Ψ=x2dx(x2x+3)2x2dx(x2x+3)2=ax+bx2x+3+cx+dx2x+3dxx2dx(x2x+3)2=a(x2x+3)(ax+b)(2x1)(x2x+3)2+(cx+d)(x2x+3)(x2x+3)2c=0,a2ac+d=1d=a+1,a+a2b+3cd=0d=2b3a+b+3d=06aa1+6a+6=0a=511,d=611,b=311Ψ=[5x+311(x2x+3)+611dxx2x+3]=611dx(x12)2+114=[611211arctan(2x111)]=1211121π

Commented by mathmax by abdo last updated on 08/Jun/21

thanks sir your answer is cool!

thankssiryouransweriscool!

Answered by mathmax by abdo last updated on 08/Jun/21

Φ=∫_(−∞) ^(+∞)  ((x^2 dx)/((x^2 −x+3)^2 )) let ϕ(z)=(z^2 /((z^2 −z+3)^2 ))  poles of ϕ?  z^2 −z+3=0 →Δ=1−12=−11 →z_1 =((1+i(√(11)))/2) and z_2 =((1−i(√(11)))/2)  ϕ(z)=(z^2 /((z−z_1 )^2 (z−z_2 )^2 )) residus theorem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,z_1 )  Res(ϕ,z_1 )=lim_(z→z_1 )    (1/((2−1)!)){(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )    {(z^2 /((z−z_2 )^2 ))}^((1)) =lim_(z→z_1 )   ((2z(z−z_2 )^2 −2z^2 (z−z_2 ))/((z−z_2 )^4 ))  =lim_(z→z_1 )    ((2z(z−z_2 )−2z^2 )/((z−z_2 )^3 )) =((2z_1 (z_1 −z_2 )−2z_1 ^2 )/((z_1 −z_2 )^3 ))  =((−2z_1 z_2 )/((z_1 −z_2 )^3 )) =((−6)/((i(√(11)))^3 )) =((−6)/(−i11(√(11))))=((−6i)/(11(√(11))))  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ×((−6i)/(11(√(11)))) =((12π)/(11(√(11)))) ⇒  Φ=((12π)/(11(√(11))))

Φ=+x2dx(x2x+3)2letφ(z)=z2(z2z+3)2polesofφ?z2z+3=0Δ=112=11z1=1+i112andz2=1i112φ(z)=z2(zz1)2(zz2)2residustheoremgive+φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{z2(zz2)2}(1)=limzz12z(zz2)22z2(zz2)(zz2)4=limzz12z(zz2)2z2(zz2)3=2z1(z1z2)2z12(z1z2)3=2z1z2(z1z2)3=6(i11)3=6i1111=6i1111+φ(z)dz=2iπ×6i1111=12π1111Φ=12π1111

Terms of Service

Privacy Policy

Contact: info@tinkutara.com