Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 142906 by liberty last updated on 07/Jun/21

If abc=1 and a,b,c>0 prove  that (a/(b^2 (c+1)))+(b/(c^2 (a+1)))+(c/(a^2 (b+1))) ≥ (3/2)

$${If}\:{abc}=\mathrm{1}\:{and}\:{a},{b},{c}>\mathrm{0}\:{prove} \\ $$ $${that}\:\frac{{a}}{{b}^{\mathrm{2}} \left({c}+\mathrm{1}\right)}+\frac{{b}}{{c}^{\mathrm{2}} \left({a}+\mathrm{1}\right)}+\frac{{c}}{{a}^{\mathrm{2}} \left({b}+\mathrm{1}\right)}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Answered by Snail last updated on 07/Jun/21

Let us recall Titu′s Lemma  Σ(x_i ^2 /y_i )≥ (((Σx_i )^2 )/(Σy_i ))  Denote give  ineauality by E  As abc=1  Multiplying the inequality both side  by a^2 b^2 c^2  and using its valud 1 we ca transform  it and get ...  ((a^3 c^2 )/(c+1))+((b^3 a^2 )/(a+1))+((c^3 b^2 )/(b+1))≥(3/2)  now let x_1 =a^2 c^2  x_2 =b^2 a^2  x_3 =c^2 b^2   y_1 =((c+1)/a)   y_2 =((a+1)/b)  y_3 =((b+1)/c)    E ≥(((a^2 c^2 +b^2 c^2 +c^2 a^2 )^2 )/(((c+1)/a)+((b+1)/c)+((a+1)/b)))  =Z(Let)  Now usi ng the fact that    (a^2 c^2 +b^2 c^2 +a^2 b^2 )^2 ≥9  and by doing LCM of denominator we can get that   Z =(3/(2 ))  So E≥Z equality holds when all  (x_i /y_i ) are same   Proved....

$${Let}\:{us}\:{recall}\:{Titu}'{s}\:{Lemma} \\ $$ $$\Sigma\frac{{x}_{{i}} ^{\mathrm{2}} }{{y}_{{i}} }\geqslant\:\frac{\left(\Sigma{x}_{{i}} \right)^{\mathrm{2}} }{\Sigma{y}_{{i}} } \\ $$ $${Denote}\:{give}\:\:{ineauality}\:{by}\:{E} \\ $$ $${As}\:{abc}=\mathrm{1}\:\:{Multiplying}\:{the}\:{inequality}\:{both}\:{side} \\ $$ $${by}\:{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \:{and}\:{using}\:{its}\:{valud}\:\mathrm{1}\:{we}\:{ca}\:{transform} \\ $$ $${it}\:{and}\:{get}\:... \\ $$ $$\frac{{a}^{\mathrm{3}} {c}^{\mathrm{2}} }{{c}+\mathrm{1}}+\frac{{b}^{\mathrm{3}} {a}^{\mathrm{2}} }{{a}+\mathrm{1}}+\frac{{c}^{\mathrm{3}} {b}^{\mathrm{2}} }{{b}+\mathrm{1}}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $${now}\:{let}\:{x}_{\mathrm{1}} ={a}^{\mathrm{2}} {c}^{\mathrm{2}} \:{x}_{\mathrm{2}} ={b}^{\mathrm{2}} {a}^{\mathrm{2}} \:{x}_{\mathrm{3}} ={c}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$ $${y}_{\mathrm{1}} =\frac{{c}+\mathrm{1}}{{a}}\:\:\:{y}_{\mathrm{2}} =\frac{{a}+\mathrm{1}}{{b}}\:\:{y}_{\mathrm{3}} =\frac{{b}+\mathrm{1}}{{c}} \\ $$ $$ \\ $$ $${E}\:\geqslant\frac{\left({a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)^{\mathrm{2}} }{\frac{{c}+\mathrm{1}}{{a}}+\frac{{b}+\mathrm{1}}{{c}}+\frac{{a}+\mathrm{1}}{{b}}}\:\:={Z}\left({Let}\right) \\ $$ $${Now}\:{usi}\:{ng}\:{the}\:{fact}\:{that}\:\:\:\:\left({a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right)^{\mathrm{2}} \geqslant\mathrm{9} \\ $$ $${and}\:{by}\:{doing}\:{LCM}\:{of}\:{denominator}\:{we}\:{can}\:{get}\:{that}\: \\ $$ $${Z}\:=\frac{\mathrm{3}}{\mathrm{2}\:} \\ $$ $${So}\:{E}\geqslant{Z}\:{equality}\:{holds}\:{when}\:{all}\:\:\frac{{x}_{{i}} }{{y}_{{i}} }\:{are}\:{same}\: \\ $$ $${Proved}.... \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com