Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 142939 by Rasheed.Sindhi last updated on 07/Jun/21

Q#141663 by  ajfour sir reposted.       x^2 (x−12)(x−15)=k(x−16) ;k>0       Find x in terms of k.

$${Q}#\mathrm{141663}\:{by}\:\:{ajfour}\:{sir}\:{reposted}. \\ $$ $$\:\:\:\:\:{x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)={k}\left({x}−\mathrm{16}\right)\:;{k}>\mathrm{0} \\ $$ $$\:\:\:\:\:{Find}\:{x}\:{in}\:{terms}\:{of}\:{k}. \\ $$

Answered by Rasheed.Sindhi last updated on 07/Jun/21

{x^2 (x−12)(x−15)}/(x−16)=k  Quotient is k with no remainder.  Let p(x)=x^2 (x^2 −27x+180)                     =x^4 −27x^3 +180x^2 +0x+0  By synthetic division:   determinant (((16)),1,(−27),(180),0,0),(,,(    16),(−176),(64),(1024)),(,1,(−11),(     4),(64),(1024)))  p(x)=Q(x)D(x)+R  x^2 (x−12)(x−15)=   (x^3 −11x^2 +4x+64)(x−16)+1024  Neither the quotient is constant  nor the remainder is zero ∀ x  So this proves that the equation  has no solution.

$$\left\{{x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)\right\}/\left({x}−\mathrm{16}\right)={k} \\ $$ $${Quotient}\:{is}\:{k}\:{with}\:{no}\:{remainder}. \\ $$ $${Let}\:{p}\left({x}\right)={x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{27}{x}+\mathrm{180}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{4}} −\mathrm{27}{x}^{\mathrm{3}} +\mathrm{180}{x}^{\mathrm{2}} +\mathrm{0}{x}+\mathrm{0} \\ $$ $${By}\:{synthetic}\:{division}: \\ $$ $$\begin{array}{|c|c|c|}{\left.\mathrm{16}\right)}&\hline{\mathrm{1}}&\hline{−\mathrm{27}}&\hline{\mathrm{180}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{}&\hline{}&\hline{\:\:\:\:\mathrm{16}}&\hline{−\mathrm{176}}&\hline{\mathrm{64}}&\hline{\mathrm{1024}}\\{}&\hline{\mathrm{1}}&\hline{−\mathrm{11}}&\hline{\:\:\:\:\:\mathrm{4}}&\hline{\mathrm{64}}&\hline{\mathrm{1024}}\\\hline\end{array} \\ $$ $${p}\left({x}\right)={Q}\left({x}\right){D}\left({x}\right)+{R} \\ $$ $${x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)= \\ $$ $$\:\left({x}^{\mathrm{3}} −\mathrm{11}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{64}\right)\left({x}−\mathrm{16}\right)+\mathrm{1024} \\ $$ $${Neither}\:{the}\:{quotient}\:{is}\:{constant} \\ $$ $${nor}\:{the}\:{remainder}\:{is}\:{zero}\:\forall\:{x} \\ $$ $${So}\:{this}\:{proves}\:{that}\:{the}\:{equation} \\ $$ $${has}\:{no}\:{solution}. \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented bymr W last updated on 07/Jun/21

i think it′s wrong somewhere sir.  y=x^2 (x−12)(x−15) is a curve passing  through (0,0),(12,0) and (15,0)  y=k(x−16) is a line passing through  (16,0) with inclination k.  from (16,0) we can draw two tangent  lines to the curve, say these tangent  lines have inclination k_1  and k_2 .  we know for k≤k_1  or k≥k_2 , the line  y=k(x−16) intersects the curve at  least at one point and at most at  four points. that means for  k≤k_1  or k≥k_2 , the equation  x^2 (x−12)(x−15)=k(x−16) has  at least one solution and at most  four solutions.

$${i}\:{think}\:{it}'{s}\:{wrong}\:{somewhere}\:{sir}. \\ $$ $${y}={x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)\:{is}\:{a}\:{curve}\:{passing} \\ $$ $${through}\:\left(\mathrm{0},\mathrm{0}\right),\left(\mathrm{12},\mathrm{0}\right)\:{and}\:\left(\mathrm{15},\mathrm{0}\right) \\ $$ $${y}={k}\left({x}−\mathrm{16}\right)\:{is}\:{a}\:{line}\:{passing}\:{through} \\ $$ $$\left(\mathrm{16},\mathrm{0}\right)\:{with}\:{inclination}\:{k}. \\ $$ $${from}\:\left(\mathrm{16},\mathrm{0}\right)\:{we}\:{can}\:{draw}\:{two}\:{tangent} \\ $$ $${lines}\:{to}\:{the}\:{curve},\:{say}\:{these}\:{tangent} \\ $$ $${lines}\:{have}\:{inclination}\:{k}_{\mathrm{1}} \:{and}\:{k}_{\mathrm{2}} . \\ $$ $${we}\:{know}\:{for}\:{k}\leqslant{k}_{\mathrm{1}} \:{or}\:{k}\geqslant{k}_{\mathrm{2}} ,\:{the}\:{line} \\ $$ $${y}={k}\left({x}−\mathrm{16}\right)\:{intersects}\:{the}\:{curve}\:{at} \\ $$ $${least}\:{at}\:{one}\:{point}\:{and}\:{at}\:{most}\:{at} \\ $$ $${four}\:{points}.\:{that}\:{means}\:{for} \\ $$ $${k}\leqslant{k}_{\mathrm{1}} \:{or}\:{k}\geqslant{k}_{\mathrm{2}} ,\:{the}\:{equation} \\ $$ $${x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)={k}\left({x}−\mathrm{16}\right)\:{has} \\ $$ $${at}\:{least}\:{one}\:{solution}\:{and}\:{at}\:{most} \\ $$ $${four}\:{solutions}. \\ $$

Commented bymr W last updated on 07/Jun/21

Commented byRasheed.Sindhi last updated on 08/Jun/21

ThanX for your Efforts Sir!  Perhaps my logic is only valid for  integer k(?).

$$\mathcal{T}{han}\mathcal{X}\:{for}\:{your}\:\mathcal{E}{fforts}\:\mathcal{S}{ir}! \\ $$ $${Perhaps}\:{my}\:{logic}\:{is}\:{only}\:{valid}\:{for} \\ $$ $${integer}\:{k}\left(?\right). \\ $$

Commented bymr W last updated on 08/Jun/21

the question doesn′t request if  x^2 (x−12)(x−15) can be expressed as  k(x−16) for any values of x, but only  asks if one or more values of x exist  such that x^2 (x−12)(x−15)=k(x−16).

$${the}\:{question}\:{doesn}'{t}\:{request}\:{if} \\ $$ $${x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)\:{can}\:{be}\:{expressed}\:{as} \\ $$ $${k}\left({x}−\mathrm{16}\right)\:{for}\:{any}\:{values}\:{of}\:{x},\:{but}\:{only} \\ $$ $${asks}\:{if}\:{one}\:{or}\:{more}\:{values}\:{of}\:{x}\:{exist} \\ $$ $${such}\:{that}\:{x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)={k}\left({x}−\mathrm{16}\right). \\ $$

Commented byRasheed.Sindhi last updated on 08/Jun/21

OK Sir, ThanX again.

$$\mathcal{OK}\:\mathcal{S}{ir},\:\mathcal{T}{han}\mathcal{X}\:{again}. \\ $$

Answered by Rasheed.Sindhi last updated on 07/Jun/21

     x^2 (x−12)(x−15)=k(x−16) ;k>0  This means :     When x^2 (x−12)(x−15) is divided  by x−16, The quotient is k(>0) and  the remainder is 0  But we can verify that the remainder  R is:         R=(16)^2 (16−12)(16−15)              =256.4.1=1024≠0  So for any value of x the remainder  can′t be zero.  This proves that the above equation  can′t be solved (even in terms of k>0.)

$$\:\:\:\:\:{x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)={k}\left({x}−\mathrm{16}\right)\:;{k}>\mathrm{0} \\ $$ $${This}\:{means}\:: \\ $$ $$\:\:\:{When}\:{x}^{\mathrm{2}} \left({x}−\mathrm{12}\right)\left({x}−\mathrm{15}\right)\:{is}\:{divided} \\ $$ $${by}\:{x}−\mathrm{16},\:{The}\:{quotient}\:{is}\:{k}\left(>\mathrm{0}\right)\:{and} \\ $$ $${the}\:{remainder}\:{is}\:\mathrm{0} \\ $$ $${But}\:{we}\:{can}\:{verify}\:{that}\:{the}\:{remainder} \\ $$ $${R}\:{is}: \\ $$ $$\:\:\:\:\:\:\:{R}=\left(\mathrm{16}\right)^{\mathrm{2}} \left(\mathrm{16}−\mathrm{12}\right)\left(\mathrm{16}−\mathrm{15}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{256}.\mathrm{4}.\mathrm{1}=\mathrm{1024}\neq\mathrm{0} \\ $$ $${So}\:{for}\:{any}\:{value}\:{of}\:{x}\:{the}\:{remainder} \\ $$ $$\boldsymbol{{can}}'\boldsymbol{{t}}\:\boldsymbol{{be}}\:\boldsymbol{{zero}}. \\ $$ $${This}\:{proves}\:{that}\:{the}\:{above}\:{equation} \\ $$ $${can}'{t}\:{be}\:{solved}\:\left({even}\:{in}\:{terms}\:{of}\:{k}>\mathrm{0}.\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com