Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143027 by mathlove last updated on 09/Jun/21

Commented by Rasheed.Sindhi last updated on 09/Jun/21

x+(1/x)=−1⇒x=ω,ω^2   When x=ω  x^(123456789) +(1/x^(123456789) )       =ω^(123456789) +(1/ω^(123456789) )       =ω^(3×41152263) +(1/ω^(3×41152263) )       =(ω^3 )^(41152263) +(1/((ω^3 )^(41152263) ))       =(1)^(41152263) +(1/((1)^(41152263) ))=2  When x=ω^2      Same result

x+1x=1x=ω,ω2Whenx=ωx123456789+1x123456789=ω123456789+1ω123456789=ω3×41152263+1ω3×41152263=(ω3)41152263+1(ω3)41152263=(1)41152263+1(1)41152263=2Whenx=ω2Sameresult

Answered by mathmax by abdo last updated on 09/Jun/21

x+(1/x)=−1 ⇒((x^2 +1)/x)=−1 ⇒x^2  +1=−x ⇒x^2  +x+1=0  Δ=−3  ⇒x_1 =((−1+i(√3))/2) =e^((i2π)/3)  and x_2 =((−1−i(√3))/2)=e^(−((i2π)/3))    ifx=x_1  ⇒x^n  +(1/x^n ) =e^(i((2nπ)/3))  +e^(−i((2nπ)/3))  =2cos(((2nπ)/3))  take n=123456789  if x=x_2  we get x^n  +(1/x^n )=e^(−((2inπ)/3))  +e^((2inπ)/3)  =2cos(((2nπ)/3))  (same value)

x+1x=1x2+1x=1x2+1=xx2+x+1=0Δ=3x1=1+i32=ei2π3andx2=1i32=ei2π3ifx=x1xn+1xn=ei2nπ3+ei2nπ3=2cos(2nπ3)taken=123456789ifx=x2wegetxn+1xn=e2inπ3+e2inπ3=2cos(2nπ3)(samevalue)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com