Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 14306 by ajfour last updated on 30/May/17

Commented by prakash jain last updated on 30/May/17

Are a,b and c sides of triangle?

$$\mathrm{Are}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}? \\ $$

Commented by ajfour last updated on 30/May/17

yes.sides of △ABC.

$${yes}.{sides}\:{of}\:\bigtriangleup{ABC}. \\ $$

Commented by ajfour last updated on 30/May/17

Find x,y, and z in terms of  a, b, and c ,(whicb are real).

$${Find}\:\boldsymbol{{x}},\boldsymbol{{y}},\:{and}\:\boldsymbol{{z}}\:{in}\:{terms}\:{of} \\ $$$$\boldsymbol{{a}},\:\boldsymbol{{b}},\:{and}\:\boldsymbol{{c}}\:,\left({whicb}\:{are}\:{real}\right). \\ $$

Answered by ajfour last updated on 30/May/17

Assume C as the  origin witb  side a along x axis.  also  A(α,β)  and M(h,k)  α^2 +β^2 =b^2   (a−α)^2 +(−β)^2 =c^2   subtracting:  2aα−a^2 =b^2 −c^2   α=((a^2 +b^2 −c^2 )/(2a))   β^  =±(√(b^2 −α^2 ))  let  m=(k/h)  slope of  CM=m=(k/h)  slope of RC=−(1/(slope of AM))      =−((α−h)/(β−k))  ∠ between CM and RC =(π/6)  So,  tan (π/6)=((m+(((α−h)/(β−k))))/(1−(((α−h)/(β−k)))))=(1/(√3))  as m=k/h  (((√3)k)/h)+(√3)(((α−h)/(β−k)))=1−(((α−h)/(β−k)))  or,  (√3)k^2 −k(𝛂+𝛃(√3))        =−h^2 (√3)+𝛂(√3)h−𝛃h   ...(i)  A similar second case,  slope of BQ=−(1/m)=−(h/k)  slope of BM=(k/(h−a))  ∠ between BM and BQ =(π/6)  So,  (((k/(h−a))+(1/m))/(1−((k/(h−a)))(1/m)))=(1/(√3))  witb m=(k/h) , this leads to  (√3)k^2 +ak=−h^2 (√3)+ah(√3)   ...(ii)  (ii)−(i) gives:  k(a+𝛂+𝛃(√3))=h(a(√3)−𝛂(√3)+𝛃h)  m=(k/h)=(((a−𝛂)(√3)+𝛃)/(a+𝛂+𝛃(√3)))   replacing k=mh in (ii)  (√3)(1+m^2 )h^2 =(a(√3)−m)h  h shouldn′t be zero, so    h=((a((√3)−m))/((√3)(1+m^2 )))  and k=mh  now,       y^2 =h^2 +k^2       (see figure)       z^2 =(𝛂−h)^2 +(𝛃−k)^2       x^2 =(a−h)^2 +k^2  .  .............................................  if  a=2, b=3, and c=4   we have  𝛂=((a^2 +b^2 −c^2 )/(2a))=−(3/4)  positive 𝛃=(√(b^2 −α^2 ))=((√(135))/4)  m=(((a−𝛂)(√3)+𝛃)/(a+𝛂+𝛃(√3)))=1.222  h=((a((√3)−m))/((√3)(1+m^2 )))=0.236  k=mh=0.29  y=(√(h^2 +k^2 )) ≈ 0.374  z=(√((𝛂−h)^2 +(𝛃−k)^2 )) ≈ 2.79  x=(√((a−h)^2 +k^2 )) ≈ 1.79  then          x^2 +y^2 +xy=a^2 =4         y^2 +z^2 +yz=b^2 =9         z^2 +x^2 +xz=c^2 =16   i have verified ....

$${Assume}\:{C}\:{as}\:{the}\:\:{origin}\:{witb} \\ $$$${side}\:\boldsymbol{{a}}\:{along}\:{x}\:{axis}. \\ $$$${also}\:\:{A}\left(\alpha,\beta\right)\:\:{and}\:{M}\left({h},{k}\right) \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$$\left({a}−\alpha\right)^{\mathrm{2}} +\left(−\beta\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$${subtracting}: \\ $$$$\mathrm{2}{a}\alpha−{a}^{\mathrm{2}} ={b}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$$$\alpha=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{a}}\: \\ $$$$\beta^{\:} =\pm\sqrt{{b}^{\mathrm{2}} −\alpha^{\mathrm{2}} } \\ $$$${let}\:\:{m}=\frac{{k}}{{h}} \\ $$$${slope}\:{of}\:\:{CM}={m}=\frac{{k}}{{h}} \\ $$$${slope}\:{of}\:{RC}=−\frac{\mathrm{1}}{{slope}\:{of}\:{AM}} \\ $$$$\:\:\:\:=−\frac{\alpha−{h}}{\beta−{k}} \\ $$$$\angle\:{between}\:{CM}\:{and}\:{RC}\:=\frac{\pi}{\mathrm{6}} \\ $$$${So},\:\:\mathrm{tan}\:\frac{\pi}{\mathrm{6}}=\frac{{m}+\left(\frac{\alpha−{h}}{\beta−{k}}\right)}{\mathrm{1}−\left(\frac{\alpha−{h}}{\beta−{k}}\right)}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$${as}\:{m}={k}/{h} \\ $$$$\frac{\sqrt{\mathrm{3}}{k}}{{h}}+\sqrt{\mathrm{3}}\left(\frac{\alpha−{h}}{\beta−{k}}\right)=\mathrm{1}−\left(\frac{\alpha−{h}}{\beta−{k}}\right) \\ $$$${or}, \\ $$$$\sqrt{\mathrm{3}}\boldsymbol{{k}}^{\mathrm{2}} −\boldsymbol{{k}}\left(\boldsymbol{\alpha}+\boldsymbol{\beta}\sqrt{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:=−\boldsymbol{{h}}^{\mathrm{2}} \sqrt{\mathrm{3}}+\boldsymbol{\alpha}\sqrt{\mathrm{3}}\boldsymbol{{h}}−\boldsymbol{\beta{h}}\:\:\:...\left(\boldsymbol{{i}}\right) \\ $$$${A}\:{similar}\:{second}\:{case}, \\ $$$${slope}\:{of}\:{BQ}=−\frac{\mathrm{1}}{{m}}=−\frac{{h}}{{k}} \\ $$$${slope}\:{of}\:{BM}=\frac{{k}}{{h}−{a}} \\ $$$$\angle\:{between}\:{BM}\:{and}\:{BQ}\:=\frac{\pi}{\mathrm{6}} \\ $$$${So},\:\:\frac{\frac{{k}}{{h}−{a}}+\frac{\mathrm{1}}{{m}}}{\mathrm{1}−\left(\frac{{k}}{{h}−{a}}\right)\frac{\mathrm{1}}{{m}}}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$${witb}\:{m}=\frac{{k}}{{h}}\:,\:{this}\:{leads}\:{to} \\ $$$$\sqrt{\mathrm{3}}\boldsymbol{{k}}^{\mathrm{2}} +\boldsymbol{{ak}}=−\boldsymbol{{h}}^{\mathrm{2}} \sqrt{\mathrm{3}}+\boldsymbol{{ah}}\sqrt{\mathrm{3}}\:\:\:...\left(\boldsymbol{{ii}}\right) \\ $$$$\left(\boldsymbol{{ii}}\right)−\left(\boldsymbol{{i}}\right)\:{gives}: \\ $$$$\boldsymbol{{k}}\left(\boldsymbol{{a}}+\boldsymbol{\alpha}+\boldsymbol{\beta}\sqrt{\mathrm{3}}\right)=\boldsymbol{{h}}\left(\boldsymbol{{a}}\sqrt{\mathrm{3}}−\boldsymbol{\alpha}\sqrt{\mathrm{3}}+\boldsymbol{\beta{h}}\right) \\ $$$$\boldsymbol{{m}}=\frac{\boldsymbol{{k}}}{\boldsymbol{{h}}}=\frac{\left(\boldsymbol{{a}}−\boldsymbol{\alpha}\right)\sqrt{\mathrm{3}}+\boldsymbol{\beta}}{\boldsymbol{{a}}+\boldsymbol{\alpha}+\boldsymbol{\beta}\sqrt{\mathrm{3}}}\: \\ $$$${replacing}\:{k}={mh}\:{in}\:\left({ii}\right) \\ $$$$\sqrt{\mathrm{3}}\left(\mathrm{1}+{m}^{\mathrm{2}} \right){h}^{\mathrm{2}} =\left({a}\sqrt{\mathrm{3}}−{m}\right){h} \\ $$$${h}\:{shouldn}'{t}\:{be}\:{zero},\:{so} \\ $$$$\:\:\boldsymbol{{h}}=\frac{\boldsymbol{{a}}\left(\sqrt{\mathrm{3}}−\boldsymbol{{m}}\right)}{\sqrt{\mathrm{3}}\left(\mathrm{1}+\boldsymbol{{m}}^{\mathrm{2}} \right)}\:\:\boldsymbol{{and}}\:\boldsymbol{{k}}=\boldsymbol{{mh}} \\ $$$${now}, \\ $$$$\:\:\:\:\:\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{h}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \:\:\:\:\:\:\left({see}\:{figure}\right) \\ $$$$\:\:\:\:\:\boldsymbol{{z}}^{\mathrm{2}} =\left(\boldsymbol{\alpha}−\boldsymbol{{h}}\right)^{\mathrm{2}} +\left(\boldsymbol{\beta}−\boldsymbol{{k}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\boldsymbol{{x}}^{\mathrm{2}} =\left(\boldsymbol{{a}}−\boldsymbol{{h}}\right)^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \:. \\ $$$$............................................. \\ $$$${if}\:\:{a}=\mathrm{2},\:{b}=\mathrm{3},\:{and}\:{c}=\mathrm{4}\: \\ $$$${we}\:{have}\:\:\boldsymbol{\alpha}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{a}}=−\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${positive}\:\boldsymbol{\beta}=\sqrt{{b}^{\mathrm{2}} −\alpha^{\mathrm{2}} }=\frac{\sqrt{\mathrm{135}}}{\mathrm{4}} \\ $$$$\boldsymbol{{m}}=\frac{\left(\boldsymbol{{a}}−\boldsymbol{\alpha}\right)\sqrt{\mathrm{3}}+\boldsymbol{\beta}}{\boldsymbol{{a}}+\boldsymbol{\alpha}+\boldsymbol{\beta}\sqrt{\mathrm{3}}}=\mathrm{1}.\mathrm{222} \\ $$$$\boldsymbol{{h}}=\frac{\boldsymbol{{a}}\left(\sqrt{\mathrm{3}}−\boldsymbol{{m}}\right)}{\sqrt{\mathrm{3}}\left(\mathrm{1}+\boldsymbol{{m}}^{\mathrm{2}} \right)}=\mathrm{0}.\mathrm{236} \\ $$$$\boldsymbol{{k}}=\boldsymbol{{mh}}=\mathrm{0}.\mathrm{29} \\ $$$$\boldsymbol{{y}}=\sqrt{\boldsymbol{{h}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} }\:\approx\:\mathrm{0}.\mathrm{374} \\ $$$$\boldsymbol{{z}}=\sqrt{\left(\boldsymbol{\alpha}−\boldsymbol{{h}}\right)^{\mathrm{2}} +\left(\boldsymbol{\beta}−\boldsymbol{{k}}\right)^{\mathrm{2}} }\:\approx\:\mathrm{2}.\mathrm{79} \\ $$$$\boldsymbol{{x}}=\sqrt{\left(\boldsymbol{{a}}−\boldsymbol{{h}}\right)^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} }\:\approx\:\mathrm{1}.\mathrm{79} \\ $$$$\boldsymbol{{then}}\: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{xy}}=\boldsymbol{{a}}^{\mathrm{2}} =\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{yz}}=\boldsymbol{{b}}^{\mathrm{2}} =\mathrm{9} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{xz}}=\boldsymbol{{c}}^{\mathrm{2}} =\mathrm{16}\: \\ $$$${i}\:{have}\:{verified}\:.... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by ajfour last updated on 30/May/17

x^2 +y^2 +xy=a^2   ⇒  (y+(x/2))^2 +(((x(√3))/2))^2 =a^2     y+(x/2)=asin θ  ; ((x(√3))/2)=acos θ   from other two equations    z+(y/2)=bsin φ  ;  ((y(√3))/2)=bcos φ    x+(z/2)=csin ψ  ; ((z(√3))/2)=ccos ψ .  hence the geometrical idea ..  of a prior question of Algebra.

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}={a}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left({y}+\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\:\:{y}+\frac{{x}}{\mathrm{2}}={a}\mathrm{sin}\:\theta\:\:;\:\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{2}}={a}\mathrm{cos}\:\theta \\ $$$$\:{from}\:{other}\:{two}\:{equations} \\ $$$$\:\:{z}+\frac{{y}}{\mathrm{2}}={b}\mathrm{sin}\:\phi\:\:;\:\:\frac{{y}\sqrt{\mathrm{3}}}{\mathrm{2}}={b}\mathrm{cos}\:\phi \\ $$$$\:\:{x}+\frac{{z}}{\mathrm{2}}={c}\mathrm{sin}\:\psi\:\:;\:\frac{{z}\sqrt{\mathrm{3}}}{\mathrm{2}}={c}\mathrm{cos}\:\psi\:. \\ $$$${hence}\:{the}\:{geometrical}\:{idea}\:.. \\ $$$${of}\:{a}\:{prior}\:{question}\:{of}\:{Algebra}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 30/May/17

ok mr Ajfour !it is amazing.  it is a perfect method .i love it.  thank you so much.

$${ok}\:{mr}\:{Ajfour}\:!{it}\:{is}\:{amazing}. \\ $$$${it}\:{is}\:{a}\:{perfect}\:{method}\:.{i}\:{love}\:{it}. \\ $$$${thank}\:{you}\:{so}\:{much}. \\ $$

Commented by ajfour last updated on 30/May/17

thanks for the appreciation Sir.  i have not however considered  the  special cases when  h=0, k=0, a^2 +b^2 =c^2 , ...

$${thanks}\:{for}\:{the}\:{appreciation}\:{Sir}. \\ $$$${i}\:{have}\:{not}\:{however}\:{considered} \\ $$$${the}\:\:{special}\:{cases}\:{when} \\ $$$${h}=\mathrm{0},\:{k}=\mathrm{0},\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} ,\:... \\ $$

Commented by prakash jain last updated on 30/May/17

For a=2,b=3,c=4  I got 4 solution set.  x=d,y=e,z=f is solution  than x=−d,y=−e,z=−f is also  a solution.

$$\mathrm{For}\:{a}=\mathrm{2},{b}=\mathrm{3},{c}=\mathrm{4} \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{4}\:{solution}\:{set}. \\ $$$${x}={d},{y}={e},{z}={f}\:\mathrm{is}\:\mathrm{solution} \\ $$$$\mathrm{than}\:{x}=−{d},{y}=−{e},{z}=−{f}\:\mathrm{is}\:\mathrm{also} \\ $$$$\mathrm{a}\:\mathrm{solution}. \\ $$

Commented by ajfour last updated on 30/May/17

any integer ones ?

$${any}\:{integer}\:{ones}\:? \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 31/May/17

hello mr Ajfour.  this is a nice way to solve this Q.but:  1)is  point :M, unique?  2)∡QBP  =^?   (π/6)    3)i think if M ,be a point of intersection  of some segments of ΔABC,such that  midans,bisects,....we can solve this  very easy by using relations about  a triangle segments.  4)a very spicial case in a triangle,  when M ,is the intersection of midans  of ΔABC and:∠AMB=∠BMC=∠CMA.

$${hello}\:{mr}\:{Ajfour}. \\ $$$${this}\:{is}\:{a}\:{nice}\:{way}\:{to}\:{solve}\:{this}\:{Q}.{but}: \\ $$$$\left.\mathrm{1}\right){is}\:\:{point}\::{M},\:{unique}? \\ $$$$\left.\mathrm{2}\right)\measuredangle{QBP}\:\:\overset{?} {=}\:\:\frac{\pi}{\mathrm{6}}\:\: \\ $$$$\left.\mathrm{3}\right){i}\:{think}\:{if}\:{M}\:,{be}\:{a}\:{point}\:{of}\:{intersection} \\ $$$${of}\:{some}\:{segments}\:{of}\:\Delta{ABC},{such}\:{that} \\ $$$${midans},{bisects},....{we}\:{can}\:{solve}\:{this} \\ $$$${very}\:{easy}\:{by}\:{using}\:{relations}\:{about} \\ $$$${a}\:{triangle}\:{segments}. \\ $$$$\left.\mathrm{4}\right){a}\:{very}\:{spicial}\:{case}\:{in}\:{a}\:{triangle}, \\ $$$${when}\:{M}\:,{is}\:{the}\:{intersection}\:{of}\:{midans} \\ $$$${of}\:\Delta{ABC}\:{and}:\angle{AMB}=\angle{BMC}=\angle{CMA}. \\ $$

Commented by prakash jain last updated on 30/May/17

No integer solution.  all 4 I wrote in question 14211.  There are only 4 solutions for  a=2,b=3,c=4  One of solutions matches with  yours. I followed simplification  to quadractic in one variable  approach.

$$\mathrm{No}\:\mathrm{integer}\:\mathrm{solution}. \\ $$$$\mathrm{all}\:\mathrm{4}\:\mathrm{I}\:\mathrm{wrote}\:\mathrm{in}\:\mathrm{question}\:\mathrm{14211}. \\ $$$$\mathrm{There}\:\mathrm{are}\:\mathrm{only}\:\mathrm{4}\:\mathrm{solutions}\:\mathrm{for} \\ $$$${a}=\mathrm{2},{b}=\mathrm{3},{c}=\mathrm{4} \\ $$$$\mathrm{One}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{matches}\:\mathrm{with} \\ $$$$\mathrm{yours}.\:\mathrm{I}\:\mathrm{followed}\:\mathrm{simplification} \\ $$$$\mathrm{to}\:\mathrm{quadractic}\:\mathrm{in}\:\mathrm{one}\:\mathrm{variable} \\ $$$$\mathrm{approach}. \\ $$

Commented by mrW1 last updated on 31/May/17

Mr. ajfour: Great job done!

$${Mr}.\:{ajfour}:\:{Great}\:{job}\:{done}! \\ $$

Commented by Tawa11 last updated on 15/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com