All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 143083 by Mathspace last updated on 09/Jun/21
calculateΨ(a,b)=∫0∞e−ax2(x2+b2)2dx witha>0andb>0
Answered by Olaf_Thorendsen last updated on 10/Jun/21
fb(a)=Ψ(a,b)=∫0∞e−ax2(x2+b2)2dx fb′(a)=∂Ψ∂a(a,b)=−∫0∞x2e−ax2(x2+b2)2dx fb″(a)=∂2Ψ∂a2(a,b)=+∫0∞x4e−ax2(x2+b2)2dx fb″(a)−2b2fb′(a)+b4fb(a) =∫0∞(x4+2b2x2+b4)e−ax2(x2+b2)2dx =∫0∞(x2+b2)2e−ax2(x2+b2)2dx =∫0∞e−ax2dx =1a∫0∞e−t2dt =12πa(2π∫0∞e−t2dt) =12πa fb″(a)−2b2fb′(a)+b4fb(a)=12πa fb(a)=Ψ(a,b)= (c1+c2a)eab2+π2eab2[aΓ(12,b2a)+Γ(32,ab2)b3] ...tobecontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com