Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143083 by Mathspace last updated on 09/Jun/21

calculate Ψ(a,b)=∫_0 ^∞  (e^(−ax^2 ) /((x^2  +b^2 )^2 ))dx  with a>0 and b>0

calculateΨ(a,b)=0eax2(x2+b2)2dx witha>0andb>0

Answered by Olaf_Thorendsen last updated on 10/Jun/21

f_b (a) = Ψ(a,b) = ∫_0 ^∞ (e^(−ax^2 ) /((x^2 +b^2 )^2 )) dx  f_b ′(a) = (∂Ψ/∂a)(a,b) = −∫_0 ^∞ ((x^2 e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx  f_b ′′(a) = (∂^2 Ψ/∂a^2 )(a,b) = +∫_0 ^∞ ((x^4 e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx    f_b ′′(a)−2b^2 f_b ′(a)+b^4 f_b (a)  = ∫_0 ^∞ (((x^4 +2b^2 x^2 +b^4 )e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx  = ∫_0 ^∞ (((x^2 +b^2 )^2 e^(−ax^2 ) )/((x^2 +b^2 )^2 )) dx  = ∫_0 ^∞ e^(−ax^2 ) dx  = (1/( (√a)))∫_0 ^∞ e^(−t^2 ) dt  =(1/2) (√(π/a))((2/( (√π)))∫_0 ^∞ e^(−t^2 ) dt)  =(1/2) (√(π/a))    f_b ′′(a)−2b^2 f_b ′(a)+b^4 f_b (a) = (1/2)(√(π/a))    f_b (a) = Ψ(a,b) =  (c_1 +c_2 a)e^(ab^2 ) +((√π)/2)e^(ab^2 ) [aΓ((1/2),b^2 a)+((Γ((3/2),ab^2 ))/b^3 )]  ...to be continued...

fb(a)=Ψ(a,b)=0eax2(x2+b2)2dx fb(a)=Ψa(a,b)=0x2eax2(x2+b2)2dx fb(a)=2Ψa2(a,b)=+0x4eax2(x2+b2)2dx fb(a)2b2fb(a)+b4fb(a) =0(x4+2b2x2+b4)eax2(x2+b2)2dx =0(x2+b2)2eax2(x2+b2)2dx =0eax2dx =1a0et2dt =12πa(2π0et2dt) =12πa fb(a)2b2fb(a)+b4fb(a)=12πa fb(a)=Ψ(a,b)= (c1+c2a)eab2+π2eab2[aΓ(12,b2a)+Γ(32,ab2)b3] ...tobecontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com