Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143087 by bramlexs22 last updated on 10/Jun/21

Answered by Ar Brandon last updated on 10/Jun/21

x=secϑ  I=∫_((2π)/3) ^((5π)/6) ((secϑtanϑ)/(secϑ(√(sec^2 ϑ−1))))dϑ=∫_((2π)/3) ^((5π)/6) ((tanϑ)/( (√(tan^2 ϑ))))dϑ    =[((tanϑ)/(∣tanϑ∣))ϑ]_(2π/3) ^(5π/6) =−((5π)/6)−(−((2π)/3))=−(π/6)

x=secϑI=2π35π6secϑtanϑsecϑsec2ϑ1dϑ=2π35π6tanϑtan2ϑdϑ=[tanϑtanϑϑ]2π/35π/6=5π6(2π3)=π6

Answered by EDWIN88 last updated on 10/Jun/21

⇔ let x = sec h → { ((x=−(2/( (√3))) ; h=((5π)/6))),((x=−2 ; h=((2π)/3))) :}  I = ∫_(2π/3) ^( 5π/6)  ((cos h)/( −tan h)) sec h tan h dh   I= −[ h ]_(2π/3) ^(5π/6)  = −(π/6) □

letx=sech{x=23;h=5π6x=2;h=2π3I=2π/35π/6coshtanhsechtanhdhI=[h]2π/35π/6=π6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com