Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143098 by mnjuly1970 last updated on 10/Jun/21

                    .....Prove....        Σ_(n=1) ^∞ ((1/(sinh(πn))))^2 =(1/6) −(1/(2π))   ...         ......

.....Prove....n=1(1sinh(πn))2=1612π.........

Answered by Dwaipayan Shikari last updated on 10/Jun/21

4Σ_(n=1) ^∞ (e^(2πn) /((e^(2πn) −1)^2 ))  ((sin h(πx))/(πx))=Π_(n=1) ^∞ (1+(x^2 /n^2 ))  ⇒coth(πx)−(1/(πx))=Σ_(n=1) ^∞ (((2x)/n^2 )/(1+(x^2 /n^2 )))  ⇒((e^(2πx) +1)/(e^(2πx) −1))−(1/(πx))=2Σ_(n=1) ^∞ (x/(n^2 +x^2 ))  ⇒1+(2/(e^(2πx) −1))−(1/(πx))=2Σ_(n=1) ^∞ (x/((n^2 +x^2 )))  ((−4πe^(2πx) )/((e^(2πx) −1)^2 ))+(1/(πx^2 ))=−2Σ_(n=1) ^∞ ((n^2 +x^2 −2x)/((n^2 +x^2 )^2 ))  ⇒Σ_(x=1) ^∞ (e^(2πx) /((e^(2πx) −1)^2 ))=(1/4)Σ_(n=1) ^∞ (1/(π^2 x^2 ))+(1/2)Σ_(x=1) ^∞ Σ_(n=1) ^∞ (1/((n^2 +x^2 )))−((2x)/((n^2 +x^2 )^2 ))                                   =(1/4)(.(π^2 /(π^2 6)))+(1/2)Φ=(1/(24))+Φ...

4n=1e2πn(e2πn1)2sinh(πx)πx=n=1(1+x2n2)coth(πx)1πx=n=12xn21+x2n2e2πx+1e2πx11πx=2n=1xn2+x21+2e2πx11πx=2n=1x(n2+x2)4πe2πx(e2πx1)2+1πx2=2n=1n2+x22x(n2+x2)2x=1e2πx(e2πx1)2=14n=11π2x2+12x=1n=11(n2+x2)2x(n2+x2)2=14(.π2π26)+12Φ=124+Φ...

Commented by Dwaipayan Shikari last updated on 10/Jun/21

Sorry sir . I  have tried

Sorrysir.Ihavetried

Commented by mnjuly1970 last updated on 10/Jun/21

  grateful for your effort mr payan..

gratefulforyoureffortmrpayan..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com