Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143193 by mohammad17 last updated on 11/Jun/21

prove that the function f(x)=x^2   ,xε[1,4]  is Riemannian integral ?

$${prove}\:{that}\:{the}\:{function}\:{f}\left({x}\right)={x}^{\mathrm{2}} \:\:,{x}\varepsilon\left[\mathrm{1},\mathrm{4}\right] \\ $$$${is}\:{Riemannian}\:{integral}\:? \\ $$

Answered by mathmax by abdo last updated on 11/Jun/21

∫_1 ^4 f(x)dx=∫_1 ^4  x^2 dx =[(x^3 /3)]_1 ^4 =(1/3)(4^3 −1)=(1/3)(63)=((63)/3)=21  lim_(n→+∞) ((4−1)/n)Σ_(k=1) ^n f(1+(4−1)×(k/n))  =lim_(n→+∞) (3/n)Σ_(k=1) ^n f(1+((3k)/n))  =lim_(n→+∞) (3/n)Σ_(k=1) ^n (1+((3k)/n))^2  =lim_(n→+∞) (3/n)Σ_(k=1) ^n (1+((6k)/n)+((9k^2 )/n^2 ))  =3 +lim_(n→+∞) ((18)/n^2 )Σ_(k=1) ^n  k +lim_(n→+∞) ((27)/n^3 )Σ_(k=1) ^n k^2   =3+lim_(n→+∞) ((18)/n^2 )((n(n+1))/2) +lim_(n→+∞) ((27)/n^3 )((n(n+1)(2n+1))/6)  =3+9 +9 =21 ⇒f is Rieman integrable.

$$\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{1}} ^{\mathrm{4}} \:\mathrm{x}^{\mathrm{2}} \mathrm{dx}\:=\left[\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{1}} ^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{4}^{\mathrm{3}} −\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{63}\right)=\frac{\mathrm{63}}{\mathrm{3}}=\mathrm{21} \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{4}−\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \mathrm{f}\left(\mathrm{1}+\left(\mathrm{4}−\mathrm{1}\right)×\frac{\mathrm{k}}{\mathrm{n}}\right) \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{3}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \mathrm{f}\left(\mathrm{1}+\frac{\mathrm{3k}}{\mathrm{n}}\right) \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{3}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{1}+\frac{\mathrm{3k}}{\mathrm{n}}\right)^{\mathrm{2}} \:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{3}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{1}+\frac{\mathrm{6k}}{\mathrm{n}}+\frac{\mathrm{9k}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right) \\ $$$$=\mathrm{3}\:+\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{18}}{\mathrm{n}^{\mathrm{2}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{k}\:+\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{27}}{\mathrm{n}^{\mathrm{3}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \mathrm{k}^{\mathrm{2}} \\ $$$$=\mathrm{3}+\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{18}}{\mathrm{n}^{\mathrm{2}} }\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\:+\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{27}}{\mathrm{n}^{\mathrm{3}} }\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$=\mathrm{3}+\mathrm{9}\:+\mathrm{9}\:=\mathrm{21}\:\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{Rieman}\:\mathrm{integrable}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com