All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 143259 by Mathspace last updated on 12/Jun/21
solvey″−y′+2=xsin(3x)
Answered by qaz last updated on 12/Jun/21
yp=1D2−D[xsin(3x)−2]=1D−1(−13xcos3x+19sin3x−2x)=−13⋅1D−1(xcos3x)+19⋅1D−1(sin3x)+2x+2=−13(x−1D−1)1D−1cos3x+19⋅D+1(−32)−1sin3x+2x+2=−13(x−1D−1)D+1(−32)−1cos3x−190(3cos3x+sin3x)+2x+2=130(x−1D−1)(−3sin3x+cos3x)−190(3cos3x+sin3x)+2x+2=130[−3xsin3x+xcos3x+1+D10(−3sin3x+cos3x)]−190(3cos3x+sin3x)+2x+2=130[−3xsin3x+xcos3x−4cos3x+3sin3x5]−190(3cos3x+sin3x)+2x+2=−110xsin3x+130xcos3x−350cos3x−7225sin3x+2x+2⇒y=C1+C2ex−110xsin3x+130xcos3x−350cos3x−7225sin3x+2x−−−−−−−−−−−−−−−−−−−yp=1D2−D(xsin3x−2)=(x−2D−1D2−D)1D2−D(sin3x)−1D−1(2x)=(x−2D−1D2−D)D2+D(−32)2−(−32)(sin3x)+2x+2=190(x−2D−1D2−D)(3cos3x−9sin3x)+2x+2=x30(cos3x−3sin3x)−130⋅2D−1D2−D(cos3x−3sin3x)+2x+2=x30(cos3x−3sin3x)−130⋅(2D−1)(D2+D)(−32)2−(−32)(cos3x−3sin3x)+2x+2=x30(cos3x−3sin3x)−1450(2D−1)(4sin3x−3cos3x)+2x+2=x30(cos3x−3sin3x)−1450(27cos3x+14sin3x)+2x+2⇒y=C1+C2ex+x30(cos3x−3sin3x)−1450(27cos3x+14sin3x)+2x
Terms of Service
Privacy Policy
Contact: info@tinkutara.com