Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 143320 by mathdanisur last updated on 12/Jun/21

prove that:  tan^2 36° + tan^2 72° = 5

$${prove}\:{that}:\:\:{tan}^{\mathrm{2}} \mathrm{36}°\:+\:{tan}^{\mathrm{2}} \mathrm{72}°\:=\:\mathrm{5} \\ $$

Answered by Ar Brandon last updated on 12/Jun/21

tan^2 36°+tan^2 72°=tan^2 36°+cot^2 18°  =(((√(10−2(√5)))/( (√5)+1)))^2 +(((√(10+2(√5)))/( (√5)−1)))^2   =((10−2(√5))/(6+2(√5)))+((10+2(√5))/(6−2(√5)))  =(((80−32(√5))+(80+32(√5)))/(16))  =((160)/(16))=10

$$\mathrm{tan}^{\mathrm{2}} \mathrm{36}°+\mathrm{tan}^{\mathrm{2}} \mathrm{72}°=\mathrm{tan}^{\mathrm{2}} \mathrm{36}°+\mathrm{cot}^{\mathrm{2}} \mathrm{18}° \\ $$$$=\left(\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}+\frac{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$=\frac{\left(\mathrm{80}−\mathrm{32}\sqrt{\mathrm{5}}\right)+\left(\mathrm{80}+\mathrm{32}\sqrt{\mathrm{5}}\right)}{\mathrm{16}} \\ $$$$=\frac{\mathrm{160}}{\mathrm{16}}=\mathrm{10} \\ $$

Commented by mathdanisur last updated on 13/Jun/21

thanks Sir..

$${thanks}\:{Sir}.. \\ $$

Answered by MJS_new last updated on 13/Jun/21

it′s wrong

$$\mathrm{it}'\mathrm{s}\:\mathrm{wrong} \\ $$

Answered by MJS_new last updated on 13/Jun/21

tan^2  x +tan^2  2x =10  tan x =t  ((t^2 (t^4 −2t^2 +5))/((t^2 +1)^2 ))=10  t^6 −12t^4 +25t^2 −10=0  (t^2 −2)(t^4 −10t^2 +5)=0  t=±(√2)∨t=±(√(5−2(√5)))∨t=±(√(5+2(√5)))  t=tan x ⇔ x=nπ+arctan t  for 0≤x<90° we get  x=36°∨x≈54.74°∨x=72°

$$\mathrm{tan}^{\mathrm{2}} \:{x}\:+\mathrm{tan}^{\mathrm{2}} \:\mathrm{2}{x}\:=\mathrm{10} \\ $$$$\mathrm{tan}\:{x}\:={t} \\ $$$$\frac{{t}^{\mathrm{2}} \left({t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{5}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{10} \\ $$$${t}^{\mathrm{6}} −\mathrm{12}{t}^{\mathrm{4}} +\mathrm{25}{t}^{\mathrm{2}} −\mathrm{10}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{2}} −\mathrm{2}\right)\left({t}^{\mathrm{4}} −\mathrm{10}{t}^{\mathrm{2}} +\mathrm{5}\right)=\mathrm{0} \\ $$$${t}=\pm\sqrt{\mathrm{2}}\vee{t}=\pm\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{5}}}\vee{t}=\pm\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${t}=\mathrm{tan}\:{x}\:\Leftrightarrow\:{x}={n}\pi+\mathrm{arctan}\:{t} \\ $$$$\mathrm{for}\:\mathrm{0}\leqslant{x}<\mathrm{90}°\:\mathrm{we}\:\mathrm{get} \\ $$$${x}=\mathrm{36}°\vee{x}\approx\mathrm{54}.\mathrm{74}°\vee{x}=\mathrm{72}° \\ $$

Commented by mathdanisur last updated on 13/Jun/21

Sir that is it cannot be 5.?

$${Sir}\:{that}\:{is}\:{it}\:{cannot}\:{be}\:\mathrm{5}.? \\ $$

Commented by MJS_new last updated on 13/Jun/21

no. just type it in any calculator.

$$\mathrm{no}.\:\mathrm{just}\:\mathrm{type}\:\mathrm{it}\:\mathrm{in}\:\mathrm{any}\:\mathrm{calculator}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com