Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 143368 by mr W last updated on 13/Jun/21

Commented by mr W last updated on 13/Jun/21

This is a solved old question   (Q142207). The answer is  a_n =(((√2)[((√2)+1)^(2(2n−1)) +1])/( ((√2)+1)^(2(2n−1)) −1))  Any other ways to solve?

Thisisasolvedoldquestion(Q142207).Theanswerisan=2[(2+1)2(2n1)+1](2+1)2(2n1)1Anyotherwaystosolve?

Answered by mr W last updated on 13/Jun/21

here a new way.  a_(n+1) =((a_n +(4/3))/(1+(2/3)a_n ))  λa_(n+1) =((λa_n +((4λ)/3))/(1+(2/(3λ))×λa_n ))  let tan θ_n =λa_n  and  ((4λ)/3)=−(2/(3λ))=tan α     ...(I)  tan θ_(n+1) =((tan θ_n +tan α)/(1−tan θ_n tan α))=tan (θ_n +α)  ⇒θ_(n+1) =θ_n +α  ⇒θ_n =θ_1 +(n−1)α  tan θ_n =((tan θ_1 +tan (n−1)α)/(1−tan θ_1 tan (n−1)α))  λa_n =((λa_1 +tan (n−1)α)/(1−λa_1 tan (n−1)α))  ⇒a_n =((a_1 +(1/λ)tan (n−1)α)/(1−a_1 λtan (n−1)α))   ...(II)  from (I):  ((4λ)/3)=−(2/(3λ))  λ^2 =−(1/2)  ⇒λ=±(i/( (√2)))  we take λ=(i/( (√2)))  tan α=((4λ)/3)=((2(√2)i)/3)  ⇒α=(tanh^(−1)  ((2(√2))/3))i  tan (n−1)α=[tanh {(n−1)tanh^(−1)  ((2(√2))/3)}]i  put into (II):  a_n =((2+((√2)/i)×[tanh {(n−1)tanh^(−1)  ((2(√2))/3)}]i)/(1−2×(i/( (√2)))×[tanh {(n−1)tanh^(−1)  ((2(√2))/3)}]i))  a_n =((2+(√2)[tanh {(n−1)tanh^(−1)  ((2(√2))/3)}])/(1+(√2)[tanh {(n−1)tanh^(−1)  ((2(√2))/3)}]))  tanh^(−1)  ((2(√2))/3)=(1/2)ln ((1+((2(√2))/3))/(1−((2(√2))/3)))=2ln ((√2)+1)  tanh {(n−1)tanh^(−1)  ((2(√2))/3)}  =tanh {ln ((√2)+1)^(2(n−1)) }  =((((√2)+1)^(4(n−1)) −1)/(((√2)+1)^(4(n−1)) +1))  =1−(2/(((√2)+1)^(4(n−1)) +1))  a_n =((2+(√2)[1−(2/(((√2)+1)^(4(n−1)) +1))])/(1+(√2)[1−(2/(((√2)+1)^(4(n−1)) +1))]))  a_n =(((√2)((√2)+1)−((2(√2))/(((√2)+1)^(4(n−1)) +1)))/( (√2)+1−((2(√2))/(((√2)+1)^(4(n−1)) +1))))  a_n =(((√2)((√2)+1)+(√2)((√2)+1)^(4(n−1)+1) −2(√2))/( (√2)+1+((√2)+1)^(4(n−1)+1) −2(√2)))  a_n =(((√2)[((√2)−1)+((√2)+1)^(4(n−1)+1) ])/( ((√2)+1)^(4(n−1)+1) −((√2)−1)))  a_n =(((√2)[((√2)+1)^(2(2n−1)) +1])/( ((√2)+1)^(2(2n−1)) −1))

hereanewway.an+1=an+431+23anλan+1=λan+4λ31+23λ×λanlettanθn=λanand4λ3=23λ=tanα...(I)tanθn+1=tanθn+tanα1tanθntanα=tan(θn+α)θn+1=θn+αθn=θ1+(n1)αtanθn=tanθ1+tan(n1)α1tanθ1tan(n1)αλan=λa1+tan(n1)α1λa1tan(n1)αan=a1+1λtan(n1)α1a1λtan(n1)α...(II)from(I):4λ3=23λλ2=12λ=±i2wetakeλ=i2tanα=4λ3=22i3α=(tanh1223)itan(n1)α=[tanh{(n1)tanh1223}]iputinto(II):an=2+2i×[tanh{(n1)tanh1223}]i12×i2×[tanh{(n1)tanh1223}]ian=2+2[tanh{(n1)tanh1223}]1+2[tanh{(n1)tanh1223}]tanh1223=12ln1+2231223=2ln(2+1)tanh{(n1)tanh1223}=tanh{ln(2+1)2(n1)}=(2+1)4(n1)1(2+1)4(n1)+1=12(2+1)4(n1)+1an=2+2[12(2+1)4(n1)+1]1+2[12(2+1)4(n1)+1]an=2(2+1)22(2+1)4(n1)+12+122(2+1)4(n1)+1an=2(2+1)+2(2+1)4(n1)+1222+1+(2+1)4(n1)+122an=2[(21)+(2+1)4(n1)+1](2+1)4(n1)+1(21)an=2[(2+1)2(2n1)+1](2+1)2(2n1)1

Answered by mindispower last updated on 14/Jun/21

let f(x)=((3x+4)/(2x+3)),f^n (x)=fofo.....f(x)  n composition of f  f^n (x)=((a_n x+b_n )/(c_n x+d_n ))  A= (((3      2)),((4      3)) ),A^n = (((a_n      c_n )),((b_n       d_n )) )...claimt  A^1 =A true  A^(n+1) =A.A^n = (((3a_n +2b_n    2d_n +3c_n )),((4b_n +3d_n    4c_n +3d_n )) )  f^(n+1) (x)=f^n of=((a_n .((3x+4)/(2x+3))+b_n )/(c_n .((3x+4)/(2x+3))+d_n ))  =(((3a_n +2b_n )x+4a_n +3b_n )/((3c_n +2d_n )x+4c_n +3d_n ))...True  det(A−xI_2 )=0  ⇔(3−x)^2 −8=0⇒x∈{2(√2)+3;2(√2)−3}  (A−(3+2(√2))I_2 )u=0  ⇒u(x,y)∣−2(√2)x+2y=0⇒u(1,(√2))  (A−(2(√2)−3))u=0⇒(6−2(√2))x+2y=0  u(1,3−(√2))  P= (((1       1)),(((√2)    3−(√2))) )  P^− =(1/(3−2(√2))) (((3−(√2)      −1   )),((−(√2)         1)) )  A^n =(1/(3−2(√2))) (((1         1)),(((√2)      3−(√2))) ). ((((2(√2)+3)^n    0)),((0                   (2(√2)−3)^n )) ). (((3−(√2)     −1)),((−(√2)      1)) )  this give us a_n ,b_n ,c_n ,d_n   then f^n (x)  a_(n+1) =f^n (2),f^o =Id,f(x)=x

letf(x)=3x+42x+3,fn(x)=fofo.....f(x)ncompositionofffn(x)=anx+bncnx+dnA=(3243),An=(ancnbndn)...claimtA1=AtrueAn+1=A.An=(3an+2bn2dn+3cn4bn+3dn4cn+3dn)fn+1(x)=fnof=an.3x+42x+3+bncn.3x+42x+3+dn=(3an+2bn)x+4an+3bn(3cn+2dn)x+4cn+3dn...Truedet(AxI2)=0(3x)28=0x{22+3;223}(A(3+22)I2)u=0u(x,y)22x+2y=0u(1,2)(A(223))u=0(622)x+2y=0u(1,32)P=(11232)P=1322(32121)An=1322(11232).((22+3)n00(223)n).(32121)thisgiveusan,bn,cn,dnthenfn(x)an+1=fn(2),fo=Id,f(x)=x

Commented by mr W last updated on 14/Jun/21

thanks sir!

thankssir!

Commented by mindispower last updated on 17/Jun/21

pleasur sir

pleasursir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com