All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 143380 by Mathspace last updated on 13/Jun/21
developpatfourierserief(x)=31+2cosxbyuseoftwomethods
Answered by mathmax by abdo last updated on 14/Jun/21
method1f(x)=31+2cosx=31+2eix+e−ix2=31+eix+e−ix=eix=z31+z+z−1=3zz+z2+1=3zz2+z+1=Ψ(z)z2+z+1=0→Δ=−3⇒z1=−1+i32=e2iπ3andz2=−1−i32=e−2iπ3⇒Ψ(z)=3z(z−z1)(z−z2)=3zz1−z2(1z−z1−1z−z2)=3i3(zz−z1−zz−z2)=−i3(z−z1+z1z−z1−z−z2+z2z−z2)=−i3(z1z−z1−z2z−z2)=i3(z1z1−z−z2z2−z)=i3{11−zz1−11−zz2}wehave∣zz1∣=∣zz2∣=1⇒Ψ(z)=i3(∑n=0∞znz1n−∑n=0∞znz2n)=i3∑n=0∞(e−2inπ3+e2inπ3)zn=i3∑n=0∞2cos(2nπ3)zn=2i3∑n=0∞cos(2nπ3)einx=2i3∑n=0∞cos(2nπ3)(cos(nx)+isin(nx))=2i3∑n=0∞cos(2nπ3)cos(nx)−23∑n=0∞cos(2nπ3)sin(nx)butΨ(z)=f(x)real⇒f(x)=−23∑n=0∞cos(2nπ3)sin(nx)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com