Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 143380 by Mathspace last updated on 13/Jun/21

developp at fourier serie  f(x)=(3/(1+2cosx))  by use of two methods

developpatfourierserief(x)=31+2cosxbyuseoftwomethods

Answered by mathmax by abdo last updated on 14/Jun/21

method 1   f(x)=(3/(1+2cosx))=(3/(1+2((e^(ix) +e^(−ix) )/2)))=(3/(1+e^(ix)  +e^(−ix) ))  =_(e^(ix) =z)      (3/(1+z +z^(−1) ))=((3z)/(z+z^2  +1))=((3z)/(z^2  +z+1))=Ψ(z)  z^2  +z+1=0→Δ=−3  ⇒z_1 =((−1+i(√3))/2)=e^((2iπ)/3)  and z_2 =((−1−i(√3))/2)=e^(−((2iπ)/3))   ⇒Ψ(z)=((3z)/((z−z_1 )(z−z_2 ))) =((3z)/(z_1 −z_2 ))((1/(z−z_1 ))−(1/(z−z_2 )))  =(3/(i(√3)))((z/(z−z_1 ))−(z/(z−z_2 )))=−i(√3)(((z−z_1 +z_1 )/(z−z_1 ))−((z−z_2 +z_2 )/(z−z_2 )))  =−i(√3)((z_1 /(z−z_1 ))−(z_2 /(z−z_2 )))=i(√3)((z_1 /(z_1 −z))−(z_2 /(z_2 −z)))  =i(√3){(1/(1−(z/z_1 )))−(1/(1−(z/z_2 )))} we have ∣(z/z_1 )∣=∣(z/z_2 )∣=1 ⇒  Ψ(z)=i(√3)(Σ_(n=0) ^∞  (z^n /z_1 ^n )−Σ_(n=0) ^∞  (z^n /z_2 ^n ))  =i(√3)Σ_(n=0) ^∞  (e^(−((2inπ)/3))  +e^((2inπ)/3) )z^n   =i(√3)Σ_(n=0) ^∞  2cos(((2nπ)/3))z^n  =2i(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))e^(inx)   =2i(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))(cos(nx)+isin(nx))  =2i(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))cos(nx)−2(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))sin(nx)  butΨ(z)=f(x) real ⇒f(x)=−2(√3)Σ_(n=0) ^∞  cos(((2nπ)/3))sin(nx)

method1f(x)=31+2cosx=31+2eix+eix2=31+eix+eix=eix=z31+z+z1=3zz+z2+1=3zz2+z+1=Ψ(z)z2+z+1=0Δ=3z1=1+i32=e2iπ3andz2=1i32=e2iπ3Ψ(z)=3z(zz1)(zz2)=3zz1z2(1zz11zz2)=3i3(zzz1zzz2)=i3(zz1+z1zz1zz2+z2zz2)=i3(z1zz1z2zz2)=i3(z1z1zz2z2z)=i3{11zz111zz2}wehavezz1∣=∣zz2∣=1Ψ(z)=i3(n=0znz1nn=0znz2n)=i3n=0(e2inπ3+e2inπ3)zn=i3n=02cos(2nπ3)zn=2i3n=0cos(2nπ3)einx=2i3n=0cos(2nπ3)(cos(nx)+isin(nx))=2i3n=0cos(2nπ3)cos(nx)23n=0cos(2nπ3)sin(nx)butΨ(z)=f(x)realf(x)=23n=0cos(2nπ3)sin(nx)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com