Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 143381 by Mathspace last updated on 13/Jun/21

let f(x)=arctan((√2)x^2 )  1) calculate f^((n)) (x)and f^((n)) (0)  2)if f(x)=Σa_n x^n   find the   sequence a_n

letf(x)=arctan(2x2)1)calculatef(n)(x)andf(n)(0)2)iff(x)=Σanxnfindthesequencean

Answered by TheHoneyCat last updated on 13/Jun/21

  not in the right order, to make it more simple  ∀x∈]−1,1[  (1/(1−x)) = Σ_(n=0) ^∞ x^n   thus: (1/(1+x^2 ))=Σ_(n=0) ^∞ (−1)^n x^(2n)   knowing  that arctan′ = x→(1/(1+x^2 )) and that arctan(0)=0  arctan(x)=Σ_(n=0) ^∞ (((−1)^n )/(2n+1))x^(2n+1)   and therefor :  arctan((√2)x^2 )=2(√2)Σ_(n=0) ^∞ (((−1)^n )/(2n+1))x^(4n+2)      so ∀n∈N if n≡2[4]  a_n =(((−1)^((n−2)/4) )/(((n−2)/2)+1))  otherwise a_n =0    and ∀n∈N f^((n)) (0)=a_n     as for f^((n)) (x) I am quite not courageous enought  f^((0)) (x) =((2(√2)x)/(1+2x^4 ))  from that point on, one must use Leibnietz′s formula for the derivation of a product  (fg)^((n)) =Σ_(k=0) ^n  ((n),(k) )f^((n−k)) g^((k))   with f: x→2(√2)x and g:x→(1/(1+2x^2 ))    it obviously simplifies due to f′′=x→0  but like I said, I am not courrageous enougth    maybe there is a faster method  (for instance,  if you guess a solution, you only have to verify it with a recurence)  good luck to you with that last bit.

notintherightorder,tomakeitmoresimplex]1,1[11x=n=0xnthus:11+x2=n=0(1)nx2nknowingthatarctan=x11+x2andthatarctan(0)=0arctan(x)=n=0(1)n2n+1x2n+1andtherefor:arctan(2x2)=22n=0(1)n2n+1x4n+2sonNifn2[4]an=(1)n24n22+1otherwisean=0andnNf(n)(0)=anasforf(n)(x)Iamquitenotcourageousenoughtf(0)(x)=22x1+2x4fromthatpointon,onemustuseLeibnietzsformulaforthederivationofaproduct(fg)(n)=nk=0(nk)f(nk)g(k)withf:x22xandg:x11+2x2itobviouslysimplifiesduetof=x0butlikeIsaid,Iamnotcourrageousenougthmaybethereisafastermethod(forinstance,ifyouguessasolution,youonlyhavetoverifyitwitharecurence)goodlucktoyouwiththatlastbit.

Answered by mathmax by abdo last updated on 14/Jun/21

1)f(x)=arctan((√2)x^2 )⇒f^′ (x)=((2(√2)x)/(1+2x^4 ))=((2(√2)x)/(((√2)x^2 −i)((√2)x^2 +i)))  =((2(√2)x)/(2(x^2 −(i/( (√2))))(x^2 +(i/( (√2))))))=(((√2)x)/((x−(1/( (√(√2))))e^((iπ)/4) )(x+(1/( (√(√2))))e^((iπ)/4) )(x−(1/( (√(√2))))e^(−((iπ)/4)) )(x+(1/( (√(√2))))e^(−((iπ)/4)) )))  (λ=(1/( (√(√2)))))=(a/(x−λe^((iπ)/4) ))+(b/(x+λe^((iπ)/4) ))+(c/(x−λe^(−((iπ)/4)) )) +(d/(x+λ e^(−((iπ)/4)) ))  a=((λ(√2)e^((iπ)/4) )/(2λe^((iπ)/4) (λ^2 i+(i/( (√2))))))=(1/( (√2)(((2i)/( (√2))))))=(1/(2i))  its eazy to find other coefficient  ⇒f^((n)) (x)=((a(−1)^(n−1) (n−1)!)/((x−λe^((iπ)/4) )^n ))+((b(−1)^(n−1) (n−1)!)/((x+λe^((iπ)/4) )))  +((c(−1)^(n−1) (n−1)!)/((x−λe^(−((iπ)/4)) )^n )) +((d(−1)^(n−1) (n−1)!)/((x+λe^(−((iπ)/4)) )))  =(−1)^(n−1) (n−1)!{(a/((x−λe^((iπ)/4) )^n ))+(b/((x+λe^((iπ)/4) )^n ))+(c/((x−λe^(−((iπ)/4)) )^n ))  +(d/((x+λe^(−((iπ)/4)) )^n ))} ⇒  f^((n)) (0)=(−1)^(n−1) (n−1)!{((ae^(−((inπ)/4)) )/((−λ)^n ))+((be^(−((inπ)/4)) )/λ^n ) +((ce^((inπ)/4) )/((−λ)^n ))+(de^((inπ)/4) /λ^n )}  (λ=(1/((^4 (√2)))))  2)if f(x)=Σa_n x^n  ⇒a_n =((f^((n)) (0))/(n!))

1)f(x)=arctan(2x2)f(x)=22x1+2x4=22x(2x2i)(2x2+i)=22x2(x2i2)(x2+i2)=2x(x12eiπ4)(x+12eiπ4)(x12eiπ4)(x+12eiπ4)(λ=12)=axλeiπ4+bx+λeiπ4+cxλeiπ4+dx+λeiπ4a=λ2eiπ42λeiπ4(λ2i+i2)=12(2i2)=12iitseazytofindothercoefficientf(n)(x)=a(1)n1(n1)!(xλeiπ4)n+b(1)n1(n1)!(x+λeiπ4)+c(1)n1(n1)!(xλeiπ4)n+d(1)n1(n1)!(x+λeiπ4)=(1)n1(n1)!{a(xλeiπ4)n+b(x+λeiπ4)n+c(xλeiπ4)n+d(x+λeiπ4)n}f(n)(0)=(1)n1(n1)!{aeinπ4(λ)n+beinπ4λn+ceinπ4(λ)n+deinπ4λn}(λ=1(42))2)iff(x)=Σanxnan=f(n)(0)n!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com