Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143495 by lapache last updated on 15/Jun/21

On definit la fonction   L(f(t))(p)=∫_0 ^(+∞) f(t)e^(−pt) dt  Calculer L(((t^n /(n!))))(p)

$${On}\:{definit}\:{la}\:{fonction}\: \\ $$$$\mathscr{L}\left({f}\left({t}\right)\right)\left({p}\right)=\int_{\mathrm{0}} ^{+\infty} {f}\left({t}\right){e}^{−{pt}} {dt} \\ $$$${Calculer}\:\mathscr{L}\left(\left(\frac{{t}^{{n}} }{{n}!}\right)\right)\left({p}\right) \\ $$

Answered by Ar Brandon last updated on 15/Jun/21

L((t^n /(n!)))(p)=∫_0 ^∞ (t^n /(n!))e^(−pt) dt=(1/p^(n+1) )∫_0 ^∞ (t^n /(n!))e^(−t) dt                       =(1/p^(n+1) )∙((Γ(n+1))/(n!))=(1/p^(n+1) )

$$\mathscr{L}\left(\frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}!}\right)\left(\mathrm{p}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{−\mathrm{pt}} \mathrm{dt}=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{n}+\mathrm{1}} }\centerdot\frac{\Gamma\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{n}!}=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{n}+\mathrm{1}} }\: \\ $$

Commented by lapache last updated on 15/Jun/21

Tu fais comment pour avoir le  (1/p^(n+1) )∫_0 ^∞ (t^n /(n!))e^(−t) dt    ??????

$${Tu}\:{fais}\:{comment}\:{pour}\:{avoir}\:{le} \\ $$$$\frac{\mathrm{1}}{{p}^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{n}} }{{n}!}{e}^{−{t}} {dt}\:\:\:\:??????\:\:\:\: \\ $$

Commented by Ar Brandon last updated on 15/Jun/21

A^�  l′aide d′un changement de variable  u=pt⇒t=(u/p) ⇒dt=(1/p)du  ∫_0 ^∞ (t^n /(n!))e^(−pt) dt=∫_0 ^∞ (1/(n!))((u/p))^n e^(−u) ((du/p))  =∫_0 ^∞ (1/(n!))((1/p))^(n+1) u^n e^(−u) du

$$\grave {\mathrm{A}}\:\mathrm{l}'\mathrm{aide}\:\mathrm{d}'\mathrm{un}\:\mathrm{changement}\:\mathrm{de}\:\mathrm{variable} \\ $$$$\mathrm{u}=\mathrm{pt}\Rightarrow\mathrm{t}=\frac{\mathrm{u}}{\mathrm{p}}\:\Rightarrow\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{p}}\mathrm{du} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{−\mathrm{pt}} \mathrm{dt}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{n}!}\left(\frac{\mathrm{u}}{\mathrm{p}}\right)^{\mathrm{n}} \mathrm{e}^{−\mathrm{u}} \left(\frac{\mathrm{du}}{\mathrm{p}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{n}!}\left(\frac{\mathrm{1}}{\mathrm{p}}\right)^{\mathrm{n}+\mathrm{1}} \mathrm{u}^{\mathrm{n}} \mathrm{e}^{−\mathrm{u}} \mathrm{du} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com