Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143519 by tugu last updated on 15/Jun/21

   The first two terms of the {a_n } series   are defind as a_n =a_(n−1) +a_(n−2)   for the general term   a_1 =5, a_2 =8 and n≥3 .  since the L=lim_(n→∞) (a_(n+1) /a_n )  what is the value of L

Thefirsttwotermsofthe{an}seriesaredefindasan=an1+an2forthegeneralterma1=5,a2=8andn3.sincetheL=limnan+1anwhatisthevalueofL

Answered by mathmax by abdo last updated on 15/Jun/21

a_n =a_(n−1) +a_(n−2)  ⇒a_(n+2) =a_(n+1) +a_n  ⇒a_(n+2) −a_(n+1) −a_n =0  (ec)→x^2 −x−1=0 →Δ=1+4=5 ⇒x_1 =((1+(√5))/2) and x_2 =((1−(√5))/2)  ⇒a_n =α(((1+(√5))/2))^n  +β(((1−(√5))/2))^n   a_(1 ) =5 ⇒α(((1+(√5))/2))+β(((1−(√5))/2))=5  a_2 =8 ⇒α(((1+(√5))/2))^2  +β(((1−(√5))/2))^2  =8  we get the system   { ((((1+(√5))/2)α +((1−(√5))/2)β=5)),(((((1+(√5))/2))^2 α +(((1−(√5))/2))^2 β=8)) :}  Δ_s =(((1+(√5))(1−(√5))^2 )/8)−(((1−(√5))(1+(√5))^2 )/8)  =−(1/2)(1−(√5))+(1/2)(1+(√5)) =(1/2)(1+(√5)−1+(√5))=(√5)  Δ_α = determinant (((5                ((1−(√5))/2))),((8                (((1−(√5))/2))^2 )))=(5/4)(1−(√5))^2 −4(1−(√5))  =(5/4)(6−2(√5))−4+4(√5)=(5/2)(3−(√5))−4+4(√5)=((15)/2)−4−((5(√5))/2)+4(√5)  =(7/2)+(3/2)(√(5 )) ⇒α=((7+3(√5))/(2(√5)))  Δ_β = determinant (((((1+(√5))/2)             5)),(((((1+(√5))/2))^2         8)))=4(1+(√5))−(5/4)(1+(√5))^2   =4+4(√5)−(5/4)(6+2(√5)) =4+4(√5)−(5/2)(3+(√5))=4+4(√5)−((15)/2)−((5(√5))/2)  =−(7/2) +(3/2)(√5) ⇒β =((−7+3(√5))/(2(√5))) ⇒  a_n =(((7+3(√5))/(2(√5))))(((1+(√5))/2))^n  +(((−7+3(√5))/(2(√5))))(((1−(√5))/2))^n   ⇒a_n =(((7+3(√5))(1+(√5))^n )/(2^(n+1) ((√5)))) +(((−7+3(√5))(1−(√5))^n )/(2^(n+1) ((√5))))  =(1/(((√5))2^(n+1) )){ (7+3(√5))(1+(√5))^n −(7−3(√5))(1−(√5))^n }  rest to calculate (a_(n+1) /a_n )  ....be continued...

an=an1+an2an+2=an+1+anan+2an+1an=0(ec)x2x1=0Δ=1+4=5x1=1+52andx2=152an=α(1+52)n+β(152)na1=5α(1+52)+β(152)=5a2=8α(1+52)2+β(152)2=8wegetthesystem{1+52α+152β=5(1+52)2α+(152)2β=8Δs=(1+5)(15)28(15)(1+5)28=12(15)+12(1+5)=12(1+51+5)=5Δα=|51528(152)2|=54(15)24(15)=54(625)4+45=52(35)4+45=1524552+45=72+325α=7+3525Δβ=|1+525(1+52)28|=4(1+5)54(1+5)2=4+4554(6+25)=4+4552(3+5)=4+45152552=72+325β=7+3525an=(7+3525)(1+52)n+(7+3525)(152)nan=(7+35)(1+5)n2n+1(5)+(7+35)(15)n2n+1(5)=1(5)2n+1{(7+35)(1+5)n(735)(15)n}resttocalculatean+1an....becontinued...

Answered by mr W last updated on 15/Jun/21

x^2 −x−1=0  x=((1±(√5))/2)  a_n =A(((1+(√5))/2))^n +B(((1−(√5))/2))^n   a_0 =a_2 −a_1 =8−5=3=A+B   ...(i)  a_1 =5=A(((1+(√5))/2))+B(((1−(√5))/2))   ...(ii)  ⇒A=((15+7(√5))/(10))  ⇒B=((15−7(√5))/(10))  a_n =(((15+7(√5))/(10)))(((1+(√5))/2))^n +(((15−7(√5))/(10)))(((1−(√5))/2))^n   a_n =(((1+(√5))/2))^n [(((15+7(√5))/(10)))+(((15−7(√5))/(10)))(((1−(√5))/(1+(√5))))^n ]  (a_(n+1) /a_n )=(((1+(√5))/2))×(((((15+7(√5))/(10)))+(((15−7(√5))/(10)))(((1−(√5))/(1+(√5))))^(n+1) )/((((15+7(√5))/(10)))+(((15−7(√5))/(10)))(((1−(√5))/(1+(√5))))^n ))  lim_(n→∞) (a_(n+1) /a_n )=(((1+(√5))/2))×(((((15+7(√5))/(10)))+(((15−7(√5))/(10)))×0)/((((15+7(√5))/(10)))+(((15−7(√5))/(10)))×0))=((1+(√5))/2)=ϕ

x2x1=0x=1±52an=A(1+52)n+B(152)na0=a2a1=85=3=A+B...(i)a1=5=A(1+52)+B(152)...(ii)A=15+7510B=157510an=(15+7510)(1+52)n+(157510)(152)nan=(1+52)n[(15+7510)+(157510)(151+5)n]an+1an=(1+52)×(15+7510)+(157510)(151+5)n+1(15+7510)+(157510)(151+5)nlimnan+1an=(1+52)×(15+7510)+(157510)×0(15+7510)+(157510)×0=1+52=φ

Answered by mr W last updated on 15/Jun/21

a_(n+1) =a_n +a_(n−1)   (a_(n+1) /a_n )=1+(1/(a_n /a_(n−1) ))  lim_(n→∞) (a_(n+1) /a_n )=1+(1/(lim_(n→∞) (a_n /a_(n−1) )))  L=1+(1/L) >1  L^2 −L−1=0  ⇒L=((1+(√5))/2)

an+1=an+an1an+1an=1+1anan1limnan+1an=1+1limnanan1L=1+1L>1L2L1=0L=1+52

Terms of Service

Privacy Policy

Contact: info@tinkutara.com