All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 143519 by tugu last updated on 15/Jun/21
Thefirsttwotermsofthe{an}seriesaredefindasan=an−1+an−2forthegeneralterma1=5,a2=8andn⩾3.sincetheL=limn→∞an+1anwhatisthevalueofL
Answered by mathmax by abdo last updated on 15/Jun/21
an=an−1+an−2⇒an+2=an+1+an⇒an+2−an+1−an=0(ec)→x2−x−1=0→Δ=1+4=5⇒x1=1+52andx2=1−52⇒an=α(1+52)n+β(1−52)na1=5⇒α(1+52)+β(1−52)=5a2=8⇒α(1+52)2+β(1−52)2=8wegetthesystem{1+52α+1−52β=5(1+52)2α+(1−52)2β=8Δs=(1+5)(1−5)28−(1−5)(1+5)28=−12(1−5)+12(1+5)=12(1+5−1+5)=5Δα=|51−528(1−52)2|=54(1−5)2−4(1−5)=54(6−25)−4+45=52(3−5)−4+45=152−4−552+45=72+325⇒α=7+3525Δβ=|1+525(1+52)28|=4(1+5)−54(1+5)2=4+45−54(6+25)=4+45−52(3+5)=4+45−152−552=−72+325⇒β=−7+3525⇒an=(7+3525)(1+52)n+(−7+3525)(1−52)n⇒an=(7+35)(1+5)n2n+1(5)+(−7+35)(1−5)n2n+1(5)=1(5)2n+1{(7+35)(1+5)n−(7−35)(1−5)n}resttocalculatean+1an....becontinued...
Answered by mr W last updated on 15/Jun/21
x2−x−1=0x=1±52an=A(1+52)n+B(1−52)na0=a2−a1=8−5=3=A+B...(i)a1=5=A(1+52)+B(1−52)...(ii)⇒A=15+7510⇒B=15−7510an=(15+7510)(1+52)n+(15−7510)(1−52)nan=(1+52)n[(15+7510)+(15−7510)(1−51+5)n]an+1an=(1+52)×(15+7510)+(15−7510)(1−51+5)n+1(15+7510)+(15−7510)(1−51+5)nlimn→∞an+1an=(1+52)×(15+7510)+(15−7510)×0(15+7510)+(15−7510)×0=1+52=φ
an+1=an+an−1an+1an=1+1anan−1limn→∞an+1an=1+1limn→∞anan−1L=1+1L>1L2−L−1=0⇒L=1+52
Terms of Service
Privacy Policy
Contact: info@tinkutara.com