All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 143546 by mathmax by abdo last updated on 15/Jun/21
calculate∫0∞log2x(8+x4)2dx
Answered by mathmax by abdo last updated on 16/Jun/21
f(a)=∫0∞log2xa4+x4dx⇒f′(a)=−∫0∞4a3log2x(a4+x4)2dx⇒f′(234)=−4(2)34∫0∞log2x(8+x4)2dx=−22+34∫0∞log2x(8+x4)2dx⇒∫0∞log2x(8+x4)2dx=−12114f′(234)f(a)=x=at∫0∞log2(at)a4(1+t4)adt=1a3∫0∞log2a+2logalogt+log2t1+t4dt=log2aa3∫0∞dt1+t4+2logaa3∫0∞logt1+t4dt+1a3∫0∞log2(t)1+t4dt∫0∞dt1+t4=t4=y14∫0∞y14−11+ydy=14×πsin(π4)=π4×22=π22∫0∞logt1+t4dt=t4=y14∫0∞logy1+y×14y14−1dy=116∫0∞y14−1logy1+ydy=116w′(14)withw(λ)=∫0∞yλ−11+ydy⇒w′(λ)=∫0∞yλ−1logy1+ydyw(λ)=πsin(πλ)⇒w′(λ)=−π2cos(πλ)sin2(πλ)⇒w′(14)=−π2×12(12)2=−2π2.12=−π22⇒∫0∞logt1+t4dt=−216π2∫0∞log2t1+t4dt=t4=y116∫0∞log2y1+y×14y14−1dt=164∫0∞y14−1log2y1+ydy=164w(2)(14)w(2)(λ)=−π2×−πsin(πλ)sin2(πλ)−2πsin(πλ)cos(πλ)sin4(πλ)=−π3×sin2(πλ)−2cos(πλ)sin3(πλ)⇒w(2)(14)=−π3×12−2×12(12)3=−π3×12−2122=−22π3(1−222)=2π3(22−1)⇒f(a)=log2aa3×π22+2logaa3(−216)π2+1a3×1642π3(22−1)Φ=−12114f′(234)....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com