Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 143546 by mathmax by abdo last updated on 15/Jun/21

calculate ∫_0 ^∞  ((log^2 x)/((8+x^4 )^2 ))dx

calculate0log2x(8+x4)2dx

Answered by mathmax by abdo last updated on 16/Jun/21

f(a)=∫_0 ^∞  ((log^2 x)/(a^4  +x^4 ))dx ⇒f^′ (a)=−∫_0 ^∞ ((4a^3 log^2 x)/((a^4  +x^4 )^2 )) dx ⇒  f^′ (2^(3/4) )=−4 (2)^(3/4) ∫_0 ^∞ ((log^2 x)/((8+x^4 )^2 ))dx =−2^(2+(3/4))  ∫_0 ^∞  ((log^2 x)/((8+x^4 )^2 ))dx  ⇒∫_0 ^∞  ((log^2 x)/((8+x^4 )^2 ))dx=−(1/2^((11)/4) )f^′ (2^(3/4) )  f(a)=_(x=at)   ∫_0 ^∞  ((log^2 (at))/(a^4 (1+t^4 )))adt =(1/a^3 )∫_0 ^∞   ((log^2 a +2logalogt +log^2 t)/(1+t^4 ))dt  =((log^2 a)/a^3 )∫_0 ^∞  (dt/(1+t^4 )) +((2loga)/a^3 )∫_0 ^∞  ((logt)/(1+t^4 ))dt +(1/a^3 )∫_0 ^∞  ((log^2 (t))/(1+t^4 ))dt  ∫_0 ^∞   (dt/(1+t^4 ))=_(t^4 =y) (1/4) ∫_0 ^∞     (y^((1/4)−1) /(1+y))dy =(1/4)×(π/(sin((π/4))))=(π/(4×((√2)/2)))  =(π/(2(√2)))  ∫_0 ^∞  ((logt)/(1+t^4 ))dt =_(t^4  =y)  (1/4)  ∫_0 ^∞ ((logy)/(1+y))×(1/4)y^((1/4)−1)  dy  =(1/(16))∫_0 ^∞  ((y^((1/4)−1)  logy)/(1+y))dy  =(1/(16))w^′ ((1/4)) with  w(λ)=∫_0 ^∞  (y^(λ−1) /(1+y))dy ⇒w^′ (λ)=∫_0 ^∞ ((y^(λ−1)  logy)/(1+y))dy  w(λ)=(π/(sin(πλ))) ⇒w^′ (λ)=−((π^2 cos(πλ))/(sin^2 (πλ))) ⇒  w^′ ((1/4))=−π^2  ×((1/( (√2)))/(((1/( (√2))))^2 ))=−2π^2 .(1/( (√2)))=−π^2 (√2) ⇒  ∫_0 ^∞  ((logt)/(1+t^4 ))dt =−((√2)/(16))π^2   ∫_0 ^∞  ((log^2 t)/(1+t^4 ))dt =_(t^4 =y)    (1/(16))∫_0 ^∞  ((log^2 y)/(1+y))×(1/4)y^((1/4)−1)  dt  =(1/(64))∫_0 ^∞ ((y^((1/4)−1) log^2 y)/(1+y))dy=(1/(64))w^((2)) ((1/4))  w^((2)) (λ)=−π^2 ×((−πsin(πλ)sin^2 (πλ)−2πsin(πλ)cos(πλ))/(sin^4 (πλ)))  =−π^3 ×((sin^2 (πλ)−2cos(πλ))/(sin^3 (πλ))) ⇒  w^((2)) ((1/4))=−π^3 ×(((1/2)−2×(1/( (√2))))/(((1/( (√2))))^3 ))=−π^3 ×(((1/2)−(√2))/(1/(2(√2))))  =−2(√2)π^3 (((1−2(√2))/2))=(√2)π^3 (2(√2)−1) ⇒  f(a)=((log^2 a)/a^3 )×(π/(2(√2))) +((2loga)/a^3 )(−((√2)/(16)))π^2 +(1/a^3 )×(1/(64))(√2)π^3 (2(√2)−1)  Φ=−(1/2^((11)/4) )f^′ (2^(3/4) )....

f(a)=0log2xa4+x4dxf(a)=04a3log2x(a4+x4)2dxf(234)=4(2)340log2x(8+x4)2dx=22+340log2x(8+x4)2dx0log2x(8+x4)2dx=12114f(234)f(a)=x=at0log2(at)a4(1+t4)adt=1a30log2a+2logalogt+log2t1+t4dt=log2aa30dt1+t4+2logaa30logt1+t4dt+1a30log2(t)1+t4dt0dt1+t4=t4=y140y1411+ydy=14×πsin(π4)=π4×22=π220logt1+t4dt=t4=y140logy1+y×14y141dy=1160y141logy1+ydy=116w(14)withw(λ)=0yλ11+ydyw(λ)=0yλ1logy1+ydyw(λ)=πsin(πλ)w(λ)=π2cos(πλ)sin2(πλ)w(14)=π2×12(12)2=2π2.12=π220logt1+t4dt=216π20log2t1+t4dt=t4=y1160log2y1+y×14y141dt=1640y141log2y1+ydy=164w(2)(14)w(2)(λ)=π2×πsin(πλ)sin2(πλ)2πsin(πλ)cos(πλ)sin4(πλ)=π3×sin2(πλ)2cos(πλ)sin3(πλ)w(2)(14)=π3×122×12(12)3=π3×122122=22π3(1222)=2π3(221)f(a)=log2aa3×π22+2logaa3(216)π2+1a3×1642π3(221)Φ=12114f(234)....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com