Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143588 by bobhans last updated on 16/Jun/21

Answered by EDWIN88 last updated on 16/Jun/21

F(x)=∫_4 ^(8x)  f(t) dt = (√(2+x^2 )) + c   F ′(x)= 8f(8x)=(x/( (√(2+x^2 ))))   F′(x)=f(8x)=(x/(8(√(2+x^2 ))))  ⇒f(x)=(((1/8)x)/(8(√(2+(1/(64))x^2 )))) = (x/(8(√(128+x^2 ))))  ⇒f(t)=(t/(8(√(128+t^2 ))))  F(x)=∫_4 ^(8x)  [(t/(8(√(128+t^2 )))) ]dt = (√(2+x^2 )) +c  take x=(1/2) ⇒F((1/2))=∫_( 4) ^(8.(1/2)) [(t/(8(√(128+t^2 )))) ]dt =(√(2+(1/4))) +c  ⇒ 0 = (3/2)+c ; c =−(3/2)

F(x)=8x4f(t)dt=2+x2+cF(x)=8f(8x)=x2+x2F(x)=f(8x)=x82+x2f(x)=18x82+164x2=x8128+x2f(t)=t8128+t2F(x)=8x4[t8128+t2]dt=2+x2+ctakex=12F(12)=8.124[t8128+t2]dt=2+14+c0=32+c;c=32

Answered by mathmax by abdo last updated on 16/Jun/21

∫_4 ^(8x) f(t)dt=(√(2+x^2 )) +c  by derivation we get  8f(8x)=((2x)/(2(√(2+x^2 ))))=(x/( (√(2+x^2 )))) ⇒f(8x)=(x/(8(√(2+x^2 ))))  8x=t ⇒f(t)=(t/(64(√(2+(t^2 /8^2 ))))) =(t/(8(√(128+t^2 ))))  x=0 ⇒−∫_0 ^4 f(t)dt=(√2)+c ⇒c=−(√2)−∫_0 ^4 f(t)dt  =−(√2)−(1/8)∫_0 ^4   (t/( (√(128+t^2 ))))dt =−(√2)[(√(128+t^2 ))]_0 ^4   =−(√2)((√(128+16))−(√(128)))=−(√2)((√(144))−(√(128)))

48xf(t)dt=2+x2+cbyderivationweget8f(8x)=2x22+x2=x2+x2f(8x)=x82+x28x=tf(t)=t642+t282=t8128+t2x=004f(t)dt=2+cc=204f(t)dt=21804t128+t2dt=2[128+t2]04=2(128+16128)=2(144128)

Answered by mindispower last updated on 16/Jun/21

x=(1/2) use ∫_s ^s f(x)dx=0

x=12usessf(x)dx=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com