All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 143588 by bobhans last updated on 16/Jun/21
Answered by EDWIN88 last updated on 16/Jun/21
F(x)=∫8x4f(t)dt=2+x2+cF′(x)=8f(8x)=x2+x2F′(x)=f(8x)=x82+x2⇒f(x)=18x82+164x2=x8128+x2⇒f(t)=t8128+t2F(x)=∫8x4[t8128+t2]dt=2+x2+ctakex=12⇒F(12)=∫8.124[t8128+t2]dt=2+14+c⇒0=32+c;c=−32
Answered by mathmax by abdo last updated on 16/Jun/21
∫48xf(t)dt=2+x2+cbyderivationweget8f(8x)=2x22+x2=x2+x2⇒f(8x)=x82+x28x=t⇒f(t)=t642+t282=t8128+t2x=0⇒−∫04f(t)dt=2+c⇒c=−2−∫04f(t)dt=−2−18∫04t128+t2dt=−2[128+t2]04=−2(128+16−128)=−2(144−128)
Answered by mindispower last updated on 16/Jun/21
x=12use∫ssf(x)dx=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com