All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 143609 by mnjuly1970 last updated on 16/Jun/21
Provethat::Ω:=∫01ln2(1−x).ln(x)xdx=−12ζ(4)Withoutusingthe‘‘Betafunction″m.n
Answered by mindispower last updated on 16/Jun/21
∫ln(1−x)xdx=−li2(x)=−[li2(x)ln(x)ln(1−x)]01−∫01li2(x)1−xln(x)dx+∫01li2(x)ln(1−x)xdx=−∫01li2(x)ln(x)1−x+∫01li2(x).(−d(li2(x))=−∫01li2(x)ln(x)1−xdx−12ζ2(2)−∫01li2(x)ln(x)1−xdx=−∑n⩾1∑k⩾0∫01xnn2.xkln(x)dx=∑n⩾1∑k⩾01n2∫01xn+k(−ln(x))dx∑n⩾1∑k⩾01n2(n+k+1)=∑n⩾1∑k⩾n+11k2n2=Sstartζ(2).ζ(2)=∑n⩾1∑k⩾11n2k2=∑n⩾1∑k⩾n+11n2k2+∑n⩾11n2.n2+∑n⩾2∑k⩽n−11n2k2⇒2∑n⩾1∑k⩾n+11n2k2+ζ(4)=ζ2(2)⇒S=−ζ(4)2+ζ2(2)2Ω=−ζ(4)2+ζ2(2)2−ζ2(2)2=ζ(4)2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com